Skip to main content
Log in

Influence of oxygen contamination on the surface tension of liquid tin

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The surface tension of liquid tin has been measured by the sessile-drop technique as a function of temperature, in the range 232 ⩽T (°C) ⩽ 800 and under different atmospheres. It is shown that oxygen strongly affects the surface tension values and that, under “nominally” very clean conditions, a considerable scatter of experimental results occurs. This scatter can be explained by taking into account kinetic factors, especially those related to the gaseous fluxes around the molten drop. By this procedure, a number of experimental results can be singled out, which corresponds to “clean” surface conditions. On the basis of these results, the following expression for surface tension politherm is proposed: σ(mN m−1 = 581-0.13) (t-232).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Keene,Int. Mater. Rev. 33 (1988) 1.

    Google Scholar 

  2. K. Ogino andH. Taimatsu,J. Jpn. Inst. Metals 43 (1979) 871.

    Google Scholar 

  3. K. Ogino, H. Taimatsu andF. Nakatani,ibid. 46 (1982) 957.

    Google Scholar 

  4. G. Bernard andC. H. Lupis,Metall. Trans. 2 (1971) 2991.

    Google Scholar 

  5. R. Sangiorgi, M. L. Muolo andA. Passerone,Acta Metall. 30 (1983) 1597.

    Google Scholar 

  6. H. Taimatsu, M. Abe, F. Nakatani andK. Ogino,J. Jpn. Inst. Metals 49 (1985) 523.

    Google Scholar 

  7. K. Monma andH. Suto,Trans. Jpn. Inst. Metals 2 (1961) 149.

    Google Scholar 

  8. T. E. O'Brien andC. D. Chaklader,J. Amer. Ceram. Soc. 57 (1974) 329.

    Google Scholar 

  9. Z. Morita andA. Kasama,J. Jpn. Inst. Metals 40 (1976) 787.

    Google Scholar 

  10. B. Gallois andC. H. Lupis,Metall Trans. B 12 (1981) 549.

    Google Scholar 

  11. A. Passerone, R. Sangiorgi andG. Caracciolo,J. Chem. Thermodyn. 15 (1983) 971.

    Google Scholar 

  12. D. H. Bradhurst andA. S. Buchanan,J. Phys. Chem. 63 (1959) 1486.

    Google Scholar 

  13. J. C. Hardy,J. Crystal Growth 69 (1984) 456.

    Google Scholar 

  14. Idem ibid,71 (1985) 602.

    Google Scholar 

  15. C. Garcia-Cordovilla, E. Louis andA. Pamies,J. Mater. Sci. 21 (1986) 2787.

    Google Scholar 

  16. E. Ricci, A. Passerone andJ. C. Joud,Surf. Sci. 206 (1988) 533.

    Google Scholar 

  17. O. Otzuka andZ. Kozuka,Trans. Jpn. Inst. Metals 22 (1981) 558.

    Google Scholar 

  18. L. Goumiri andJ. C. Joud,Acta metall. 30 (1982) 1397.

    Google Scholar 

  19. R. Sangiorgi, C. Senillou andJ. C. Joud,Surf. Sci. 202 (1988) 509.

    Google Scholar 

  20. M. J. Murtha andG. Burnet, in “An Annotated Bibliography for Liquid Metal Surface Tension of Groups 3A, 4A and 5A Metals”, IS 3829 Report, Ames Library, ERDA (Iowa State University, Ames 50011 Iowa, April 1976).

    Google Scholar 

  21. G. Lang,J. Inst. Metals 101 (1973) 300.

    Google Scholar 

  22. F. H. Howie andE. D. Hondros,J. Mater. Sci. 17 (1982) 143.

    Google Scholar 

  23. D. W. G. White,Metall. Trans. 2 (1971) 3067.

    Google Scholar 

  24. H. K. Abol Abdel-Aziz, M. B. Kirshah andA. M. Aref,Z. Metallkde. 66 (1975) 183.

    Google Scholar 

  25. J. A. Cahill andA. D. Kirshenbaum,J. Inorg. Nucl. Chem. 26 (1964) 206.

    Google Scholar 

  26. I. Lauermann, G. Metzger andF. Sauerwald,Z. Phys. Chem. (Leipzig) 216 (1961) 42.

    Google Scholar 

  27. K. Mukai, I. Kashiwagi andT. Takanori,Jpn Bull. Kyushu Technol. 26 (1973) 155.

    Google Scholar 

  28. Yu. V. Naidich, V. M. Perevertailo andV. S. Zhuravlev,Russ. J. Phys. Chem. 45 (1975) 556.

    Google Scholar 

  29. N. L. Pokrovskii andN. D. Galanina,Zh. Fiz. Khim. 23 (1949) 324.

    Google Scholar 

  30. N. L. Pokrovskii andD. S. Tissen,Proc. Akad. Nauk SSSR Phys. Chem. 128 (1959) 879.

    Google Scholar 

  31. Idem, Russ. J. Phys. Chem. 34 (1960) 592.

    Google Scholar 

  32. N. L. Pokrovskii andM. Saidov,Z. Fiz. Khim. 29 (1955) 1601.

    Google Scholar 

  33. N. L. Pokrovskii, P. P. Pugachevich andKh. I. Ibragimov,Sov. Phys. Dokl. 12 (1967) 170.

    Google Scholar 

  34. A. E. Schwaneke, W. L. Falke andV. L. Miller,J. Chem. Engng. Data. 23 (1978) 298.

    Google Scholar 

  35. L. L. Bircumshaw,Phil. Mag. 17 (1934) 181.

    Google Scholar 

  36. D. A. Melford andT. P. Hoar,J. Inst. Metals 85 (1957) 197.

    Google Scholar 

  37. Y. Matuyama,Sci. Rep. Tohoku Imp. Univ. 16 (1927) 555.

    Google Scholar 

  38. G. Drath andF. Sauerwald,Z. Anorg. Chem. 162 (1927) 301.

    Google Scholar 

  39. G. Lang, P. Laty, J. C. Joud andP. Desre,Z. Metallkde 67 (1977) 113.

    Google Scholar 

  40. S. I. Popel, I. N. Kozhorkov andT. V. Zakarova,Zashita Metallov. 7 (1971) 421.

    Google Scholar 

  41. T. P. Hoar andD. A. Melford,Trans. Faraday Soc. 53 (1957) 316.

    Google Scholar 

  42. T. Hogness,J. Amer. Soc. 43 (1921) 1621.

    Google Scholar 

  43. A. Adachi, Z. Morita, P. Kita, A. Kasama andS. Humamatsu,Tech. Rept. Osaka Univ. 22 (1972) 93.

    Google Scholar 

  44. F. L. Harding andD. R. Rossington,J. Amer. Ceram. Soc. 53 (1970) 87.

    Google Scholar 

  45. E. Pelzel,Berg. Huettemaenn Monatsh. 93 (1948) 248.

    Google Scholar 

  46. B. C. Allen andW. D. Kingery,Trans. Met. Soc. AIME 215 (1969) 30.

    Google Scholar 

  47. S. M. Kaufmann andT. J. Whalen,Acta Metall. 13 (1965) 797.

    Google Scholar 

  48. M. Demeri, M. Farag andJ. Heasley,J. Mater. Sci. 9 (1974) 683.

    Google Scholar 

  49. D. V. Atterton andT. P. Hoar,J. Inst. Metals 81 (1953) 541.

    Google Scholar 

  50. D. R. Sageman, PhD Thesis, Library Iowa State University, Ames, Iowa, 1976, unpublished.

    Google Scholar 

  51. J. F. Padday, in “Surface and Colloid Science”, edited by E. Matijevic Vol. 1 (Wiley-Interscience, New York, 1969) p. 101.

    Google Scholar 

  52. C. Maze andG. Burnet,Surf. Sci. 13 (1969) 451.

    Google Scholar 

  53. Idem, ibid. 24 (1971) 335.

    Google Scholar 

  54. K. Nogi, K. Ogino, A. Mclean andW. A. Miller,Metall. Trans. 17B (1986) 163.

    Google Scholar 

  55. C. Maze andG. Burnet,Surf. Sci. 27 (1971) 411.

    Google Scholar 

  56. O. Kubaschewsky andC. B. Alcock, “Metallurgical Thermochemistry”, 5th Edn (Pergamon, Oxford, New York, 1979).

    Google Scholar 

  57. J. P. Coughlin,Bur. Mines Bull. 542 (1954) 1.

    Google Scholar 

  58. JANAF Thermochemical Tables (National Bureau of Standards, 1971) and supplement (1974).

  59. P. Costa, A. Passerone andE. Ricci,High Temp. High Press. 20 (1988) 59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passerone, A., Ricci, E. & Sangiorgi, R. Influence of oxygen contamination on the surface tension of liquid tin. J Mater Sci 25, 4266–4272 (1990). https://doi.org/10.1007/BF00581083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581083

Keywords

Navigation