Skip to main content
Log in

Phase diagrams and phase structures of identical and mixed chain lithium di-n-alkyl phosphate-water binary systems. Asymmetric molecular shape effect

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Lithium salts of di-n-pentyl (DPP),n-butyl(n-hexyl) (BHP),n-propyl(n-hexyl) (PHP) and ethyl(n-octyl) (EOP) phosphates were synthesized and the phase diagrams of the lithium phosphate-water binary systems were determined. The phase diagrams of the DPP-, BHP- and PHP-water systems contain three regions (I, II and III) in common, which correspond to a homogeneous transparent one-phase solution, and lyotropic liquid crystalline and coagel phases, respectively. However, the EOP-H2O system contains an additional hard gel phase (region IV).

31P NMR spectra suggest that region I is a monomer⇔micelle equilibrium phase and region II is a lamellar phase. X-ray diffraction results show that for the DPP-, BHP-and PHP-water systems the twon-alkyl chains are closely packed in the lamellar phase in a manner which alternatively combines short and long chains, while in EOP-water system the two long chains are loosely packed. Furthermore, it may be assumed from31P NMR spectra and x-ray diffraction results that region IV in the EOP-water system is a cubic phase.

Thermotropic properties for these DAP-water systems were also investigated by DSC temperature profile curves. From the ΔH variation upon the II→I thermal transition, we assumed that stability of the aggregate structure in the liquid crystalline state increases in the order EOP<PHP<BHP<DPP. Thus, we have found that thermotropic properties for a series of DAP-water binary system are closely correlated with the extent of asymmetric molecular shape in DAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kunitake T, Okahata Y (1977) J Amer Chem Soc 99:3860–3862

    Google Scholar 

  2. Fendler JH (1980) Acc Chem Res 13:7–13

    Google Scholar 

  3. Fuhrhop JH, Mathieu J (1984) Angew Chem 96:124–137

    Google Scholar 

  4. Sudhölter EJR, Engberts JBFN, Hoekstra D (1980) J Amer Chem Soc 102:2467–2469

    Google Scholar 

  5. Sudhölter EJR, De Grip WJ, Engberts JBFN (1982) J Amer Chem Soc 104:1069–1072

    Google Scholar 

  6. Kano K, Romero A, Djermouni B, Acke HJ, Fendler JH (1979) J Amer Chem Soc 101:4030–4037

    Google Scholar 

  7. Kumano A, Kajiyama T, Takayanagi M, Kunitake T, Okahata Y (1984) Ber Bunsen-Ges Phys Chem 88:1216–1222

    Google Scholar 

  8. Shimomura M, Kunitake T (1982) J Amer Chem Soc 104:1757–1759

    Google Scholar 

  9. Murakami Y, Nakano A, Hoshimatsu A, Uchitomi K, Matsuda Y (1984) J Amer Chem Soc 106:3613–3623

    Google Scholar 

  10. Carmona-Ribeiro AM, Chaimovich H (1983) Biochim Biophys Acta 733:172–179

    Google Scholar 

  11. Carmona-Ribeiro AM, Yoshida LS, Sesso A, Chaimovich H (1984) J Colloid Interface Sci 100:433–443

    Google Scholar 

  12. Rupert LAM, Hoekstra D, Engberts JBFN (1985) J Amer Chem Soc 107:2628–2631

    Google Scholar 

  13. Rupert LAM, Engberts JBFN, Hoekstra D (1986) J Amer Chem Soc 108:3920–2925

    Google Scholar 

  14. Rupert LAM, Van Breemen JFC, Van Bruggen EFJ, Engberts JBFN, Hoekstra D (1987) J Membr Biol 95:255–263

    Google Scholar 

  15. Rupert LA, Hoekstra D, Engberts JBFN (1987) J Colloid Interface Sci 120: 125–134

    Google Scholar 

  16. Shimomura M, Kunitake T (1981) Chem Lett 1001–1004

  17. Israelachvili JN, Mitchell DJ, Ninham BW (1976) J Chem Soc Faraday Trans I 72:1525–1568

    Google Scholar 

  18. Ekwall P (1975) Adv Liq Cryst 1:1–142

    Google Scholar 

  19. Skoulios A (1979) Am Phys 3:421–450

    Google Scholar 

  20. Vincent JM, Skoulios A (1966) Acta cryst 20:432–440, 441–446, 447–451

    Google Scholar 

  21. Puvvada S, Blanckstein D (1990) J Chem Phys 92:3710–3724

    Google Scholar 

  22. Kato T, Seimiya T (1986) J Phys Chem 90:3159–3167

    Google Scholar 

  23. Herrington TM, Sahi SS (1988) J Colloid Interface Sci 121:107–120

    Google Scholar 

  24. Missel PJ, Mazer NA, Benedek GB, Young CY, Carey MC (1980) J Phys Chem 84:1044–1057

    Google Scholar 

  25. Malliaris A, Le Moigne J, Sturm J, Zana R (1985) J Phys Chem 89:2709–2713

    Google Scholar 

  26. Carnie SL, Israelachvili JN, Pailthorpe BA (1979) Biochim Biophys Acta 554: 340–357

    Google Scholar 

  27. Zana R, Talmon Y (1993) Nature 362: 228–230

    Google Scholar 

  28. McCombie H, Saunders BC, Stacey GJ (1945) J Chem Soc 380–382

  29. Mukaiyama T, Fujisawa T (1961) Bull Chem Soc Jpn 34:812–813

    Google Scholar 

  30. Hirata H, Katayama S, Okabayashi H, Furusaka M, Kawakatsu T (1995) Colloid Polym Sci in press

  31. Roberts MF, Adamich M, Robson RJ, Dennis EA (1979) Biochemistry 18: 3301–3308

    Google Scholar 

  32. Matsushita K, Kamo O, Terada Y, Yoshida T, Okabayashi H (1984) Chem Scripta 23:228–232

    Google Scholar 

  33. Crutchfield MM, Callis CF, Irani RR, Roth GC (1962) Inorg Chem 1:813–817

    Google Scholar 

  34. Jardetsky O, Wertz JE (1960) J Amer Chem Soc 82:318–323

    Google Scholar 

  35. Chachaty C, Quagebeur JP (1983) J Phys Chem 87:4341–4343

    Google Scholar 

  36. Yoshida T, Miyagai K, Taga K, Okabayashi H, Matsushita K (1990) Magn Reson Chem 28:715–721

    Google Scholar 

  37. Yoshida T, Miyagai K, Aoki S, Taga K, Okabayashi H (1991) Colloid Polym Sci 269:713–719

    Google Scholar 

  38. Cullis PR, de Kruijff B (1979) Biochem Biophys Acta 559:399–420

    Google Scholar 

  39. Lawaon KD, Mabis AJ, Flautt TJ (1968) J Phys Chem 72:2058–2065

    Google Scholar 

  40. Kodama M, Kuwabara M, Seki S (1982) Biochem Biophys Acta 689:567–570

    Google Scholar 

  41. Hirata H, Ogasawara T, Okabayashi H, unpublished data to be published separately

  42. Ulmius J, Wennerstrom H, Lindblom G, Arvidson G (1977) Biochemistry 16: 5742–5745

    Google Scholar 

  43. Okabayashi H, Taga K, Miyagai M, Uehara T, Yoshida T, Nishio E (1991) J Phys Chem 95:7932–7938

    Google Scholar 

  44. Okabayashi H, Hirata H, Suzuki Y, Taga K, Mathew C (1995) Vibrational Spectroscopy in press

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirata, H., Maegawa, K., Kawamatsu, T. et al. Phase diagrams and phase structures of identical and mixed chain lithium di-n-alkyl phosphate-water binary systems. Asymmetric molecular shape effect. Colloid Polym Sci 274, 654–661 (1996). https://doi.org/10.1007/BF00653064

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00653064

Key words

Navigation