Skip to main content
Log in

A fascinating new field in colloid science: small ligand-stabilized metal clusters and possible application in microelectronics

Part I: State of the art

  • Leading Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Small metal clusters, like Au55(PPh3)12Cl6, which fall in the size regime of 1–2 nm are colloidal nanoparticles with quantum properties in the transitional range between metals and semiconductors. These chemically tailored quantum dots show regarding the Quantum Size Effect (QSE) a level splitting between 20 and 100 meV, increasing from small particle sizes to the molecular state. The organic ligand shell surrounding the cluster acts like a dielectric “spacer” generating capacitances between neighboring clusters down to 10−18 F. Therefore, charging effects superposed by level spacing effects can be observed. The ligand-stabilized colloidal quantum dots in condensed state can be described as a novel kind of artificial solid with extremely narrow mini or hopping bands depending on the chemically adjustable thickness of the ligand shell and its properties. Since its discovery, the Single Electron Tunneling (SET) effect has been recognized to be the fundamental concept for ultimate miniaturization in microelectronics. The controlled transport of charge carriers in arrangements of ligand-stabilized clusters has been observed already at room temperature through Impedance Spectroscopy (IS) and Scanning Tunneling Spectroscopy (STS). This reveals future directions with new concepts for the realization of simple devices for Single Electron Logic (SEL).

Part I presents the fundamental aspects of small ligand-stabilized metal clusters as well as their physical properties, emphasizing their electronic and optical properties with respect to dielectric response at ambient temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ostwald W (ed) (1915) Die Welt der vernachlässigten Dimension, 1. Aufl, Th Steinkopff, Dresden

    Google Scholar 

  2. Stauff J (1960) Kolloidchemie, Springer, Berlin-Göttingen-Heidelberg

    Google Scholar 

  3. Henglein A (1987) Progr Colloid Polym Sci 73:1–4

    Google Scholar 

  4. Brus LE (1983) J Chem Phys 79:5566; (1984) 80:4403; (1986) J Phys Chem 90:2555

    Google Scholar 

  5. Henglein A (1992) Labor 2000 110

  6. Weller H (1993) Angew Chem 105:43–55

    Google Scholar 

  7. Schmid G, Pfeil R, Boese R, Bandermann F, Mayer S, Calis GHM, van der Velden JWA (1981) Chem Ber 114:3634

    Google Scholar 

  8. Mielke F, Houbertz R, Hartmann U, Simon U, Schön G, Schmid G (1994) Euro Phys Lett in press

  9. Pelster R, Marquardt P, Nimtz G, Enders A, Eifert H, Friedrich K, Petzold F (1992) Phys RevB 16:8929–8933

    Google Scholar 

  10. Ozin GA (1992) Adv Mater No 10 4:612–649

    Google Scholar 

  11. Jacobs PA, Jaeger NI, Jiru P, Schulz-Ekloff G (eds) (1982) Metal Microstructures in Zeolites, Elsevier, Amsterdam

    Google Scholar 

  12. Gügel A, Müllen K, Reichert H, Schmidt W, Schön G, Schüth F, Spikermann J, Titman J, Unger K (1993) Angew Chem No 4 105:618–619

    Google Scholar 

  13. Grabert H, Devoret MH (eds) (1992) Single Charge Tunneling, Plenum, New York

    Google Scholar 

  14. Gladun A, Zorin AB (1992) Phys i u Z No 4 23:159–165

    Google Scholar 

  15. Licharev KK, Claeson T (1992) Spektr d Wiss 8:62–67

    Google Scholar 

  16. Corcoran E (1992) Spektr d Wiss (Sonderheft 11) 1:76

    Google Scholar 

  17. Schmid G, Schön G, Simon U (1992) German Patent pending No 42-12220

  18. Schmid G, Schön G, Simon U (1992) USA Patent pending No 08/041, 239

  19. Averin DV, Korotkov AN, Licharev KK (1991) Phys Rev B 44:6199

    Google Scholar 

  20. Schmid G (1991) Mater Chem Phys 23:133

    Google Scholar 

  21. Marquardt P, Börngen L, Nimtz G, Gleiter H, Sonnberger R, Zhu J (1986) Phys Letters 114 A:39

    Google Scholar 

  22. Nimtz G, Marquardt P, Gleiter H (1988) J Crys Grow 86:66–71

    Google Scholar 

  23. Marquardt P, Nimtz G (1989) Festkörperprobleme 29:317–328

    Google Scholar 

  24. Simon U, Schön G, Schmid G (1993) Angew Chem Int Ed Engl No 2 32:250–254

    Google Scholar 

  25. Häberlen OD, Chung S-C, Rösch N (1994) Ber Bunsenges Phys Chem No 6 98:882–885

    Google Scholar 

  26. Gor'kov LP, Eliashberg GM (1965) Sov Phys JETP 21:940

    Google Scholar 

  27. Simon U, Schmid G, Schön G (1992) Mat Res Soc Symp Proc Vol 272:167–175

    Google Scholar 

  28. Hartmann U, Houbertz R, Mielke F, Simon U, Schön G, Schmid G (1995) to be published

  29. Schmid G, private communication

  30. Halperin WP (1986) Rev Mod Phys Vol 58, No 3:533–603

    Google Scholar 

  31. Kimura K (1989) Z Phys D 11:327–332

    Google Scholar 

  32. Averin AV, Licharev KK (1985) Proceedings of the Third International Conference on Superconducting Quantum Devices (SQUID's), Berlin, 197; (1986) J Low Temp Phys 62:345

  33. Licharev KK, Zorin AB (1985) J Low Temp Phys 59:347

    Google Scholar 

  34. Fulton TA, Dolan GJ (1987) Phys Rev Lett 59:109

    Google Scholar 

  35. Millikan RA (1909); see e.g. Wedler G (1982) Lehrbuch der Physikalischen Chemie, Verlag Chemie, Weinheim

    Google Scholar 

  36. Fuchs K (1938) Proc Cambridge Phil Soc 34:100

    Google Scholar 

  37. Schön G (1994) Spektr d Wiss 4:22–24

    Google Scholar 

  38. Echt O, Sattler K, Recknagel E (1981) Phys Rev Lett 47:1127

    Google Scholar 

  39. Ozin GA, Mitchell SA (1983) Angew Chem 95:706

    Google Scholar 

  40. e.g. (1992) Ber Bunsenges Phys Chem No 9 96, Special Issue on Reactions in and with Clusters

  41. Cohen ML (1986) Proc 1st NEC Symp. Hakone and Kawasaki, Japan, p 2–10

  42. Schmid G (1992) Chem Rev 92:1709–1727; Schmid G (ed) (1994), VCH, Weinheim (Germany)

    Google Scholar 

  43. Schmid G, Lehnert A, Malm J-O, Bovin J-O (1991) Angew Chem Int Ed Engl 30:852

    Google Scholar 

  44. Ozin GA, Steele M (1992) Proc 9th Int Zeolite Assoc Conf, Montreal; Ozin GA, Özkar S (1992) Chem Mater 4, 551

  45. Kawi S, Gates BC in Schmid G (ed) (1994), VCH, Weinheim (Germany)

  46. Breck DW (1974) Zeolite Molecular Sieves, John Wiley & Sons, New York

    Google Scholar 

  47. Exner D, Jaeger NI, Kleine A, Schulz-Ekloff G (1988) J Chem Faraday Trans. 84(11):4097–4104

    Google Scholar 

  48. Blatter F, Blazey KW (1990) IBM Research Report, Zürich

  49. Sradanov VI, Haug K, Metiu H, Stucky GD (1992) J Phys Chem 96:9039–9043

    Google Scholar 

  50. Edwards PP, Woodall LJ, Anderson PA, Armstrong AR, Slaski M (1993) Chem Soc Rev 305–312

  51. Wang Y, Herron N, Mahler W, Suna A (1989) J Opt Soc Am B Vol 6 No 4:808–813

    Google Scholar 

  52. Ozin GA, Kupermann A, Stein A (1989) Angew Chem Int Ed Engl 28:359

    Google Scholar 

  53. Kappes M (1988) Chem Rev 86:1049

    Google Scholar 

  54. Smit HHA, Nugteren PP, Thiel RC, de Jongh LJ (1988) Physica B 153:33

    Google Scholar 

  55. Thiel RC, Benfield RE, Zanoni R, Smit HHA, Dirken MW (1993) Struct Bond 81:2–35

    Google Scholar 

  56. Smit HHA (1989) PhD Thesis Univ of Leiden, The Netherlands

  57. Goll G, Löhneysen HV, Kreibig U, Schmid G (1991) Z Phys D 12:533

    Google Scholar 

  58. Benfield RE, Creighton JA, Eadon DG, Schmid G (1989) Z Phys D 12:533

    Google Scholar 

  59. Benfield RE, O'Brien P (unpublished work)

  60. de Jongh LJ, Brom HB, van Ruitenbeek JM, Thiel RC, Schmid G, Longoni G, Ceriotti A, Benfield RE, Zanoni R; Pacchioni G, Bagus PS (ed) Cluster Models for Surface and Bulk Phenomena (NATO ASI Series B) Vol 283:151–168

  61. Fairbanks MC, Benfield RE, Newport RJ, Schmid G (1990) Sol St Comm 74:431

    Google Scholar 

  62. Marcus MA, Andrews MP, Zegenhagen J, Bommannavar AS, Montano P (1990) Phys Rev B 42:3312

    Google Scholar 

  63. Smit HHA, Thiel RC, de Jongh LJ, Schmid G, Klein N (1988) Sol St Com 65:915

    Google Scholar 

  64. Wertheim GK, Di Cenzo SB, Youngquist SE (1983) Phys Rev Lett 51:2310

    Google Scholar 

  65. Mason MG (1983) Phys Rev B 27:748

    Google Scholar 

  66. Kittel C (1976) Feskörperphysik, John Wiley & Sons, New York

    Google Scholar 

  67. de Jongh LJ, Baak J, Brom HB, van der Putten, van Ruitenbeek, Thiel RC (1992) Physics and Chemistry of Finite Systems: From Clusters to Crystals Vol 2:839–851

    Google Scholar 

  68. Longoni G, Ceriotti A, Marchionna, Piro G (1988) Surface Organometallic Chemistry, Kluver, The Netherlands

    Google Scholar 

  69. Van Ruitenbeek JM, Jurgens MJGM, Schmid G, van Leeuven DA, Zandbergen HW, de Jongh LJ (1990) Proc 5th Symp on Small Particles and Inorganic Clusters, Konstanz

  70. Wertheim GK (1990) Phase Transitions Vol 24–26:203–214

    Google Scholar 

  71. Kubo R (1962) J Phys Soc Jpn 17:975

    Google Scholar 

  72. van Staveren MPJ, Brom HB, de Jongh LJ (1991) Physics Reports 208:1–96

    Google Scholar 

  73. e.g. Jonscher AK (1883) Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London

    Google Scholar 

  74. Macdonald JR (1987) Impedance Spectroscopy, John Wiley & Sons, New York

    Google Scholar 

  75. Liedermann K, Loidl A (1993) J Non-Cryst Solids 155:26–36

    Google Scholar 

  76. Simon U, Möhrke C (1993) Proc Meeting of the Dielectrics Society, Canterbury, UK

  77. Blümel R (1994)) PhD Thesis University of Essen, Germany

  78. Zorin AB (1993) private communication

  79. Diot JL, Joseph J, Matin JR, Clechet P (1985) Electronanal Chem 199:75–88

    Google Scholar 

  80. Steggerda JJ, van der Linden JGM, Gootzen JEF (1992) Mat Res Soc Symp Proc Vol 272:127–132

    Google Scholar 

  81. Simon U (1992) PhD Thesis University of Essen, Germany

  82. Schmid G (1993) private communication

  83. Kreibig U, Fauth K, Granqvist C-G, Schmid G (1990) Z Phys Chem 169:11–28

    Google Scholar 

  84. Mott NF (1993) Conduction in Non-Crystalline Materials (2nd Ed), Clarendon Press, Oxford; and references therein

    Google Scholar 

  85. Aspens DE (1982) Thin Solid Films 89:249

    Google Scholar 

  86. Foss CA, Gabor L, Hornyak L, Stickert JA, Martin CR (1993) Adv Mater 5 No 2:135–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, G., Simon, U. A fascinating new field in colloid science: small ligand-stabilized metal clusters and possible application in microelectronics. Colloid Polym Sci 273, 101–117 (1995). https://doi.org/10.1007/BF00654007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654007

Key words

Navigation