Skip to main content
Log in

Some aspects of lateral chain order in cellulosics from X-ray scattering

  • Research Papers
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This paper gives an overview of our recent research activities on the lateral supramolecular order of a variety of native and man-made cellulosics considering respective results from the literature. Wide-angle X-ray scattering (WAXS) was the main investigation technique used. Lateral root mean squared lattice strains between 2 and 3% were determined for the materials investigated. Crystallite sizes obtained without considering lattice distortions usually do not deviate by much more than −10% from the real, i.e. fully corrected values. This means that it is sufficient to use the simple Scherrer equation for determining lateral crystallite sizes for most routine investigations of cellulosic materials. The possible superposition of WAXS peaks of the triclinic Iα and monoclinic Iβ lattice types, however, has to be considered in crystallite size determinations for Valonia cellulose. It could be shown that neglecting this fact can lead to crystallite sizes being about 20% below the true ones. Lateral crystallite dimaensions for native celluloses vary between 4nm (dissolving pulps) and 10-15 nm (Valonia). Except for bacterial cellulose, the WAXS crystallite sizes are distinctly smaller than the microfibril dimensions obtained from electron microscopy. The man-made fibres investigated showed lateral crystallite dimensions between 3 and 5nm. The importance of lateral crystallite dimensions for the properties of man-made fibres and for the alkalization process of native cellulose id demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackwell, J. and Kolpak, F. J. (1976) Cellulose microfibrils as disordered arrays of elementary fibrils.Appl. Polymer Symp. 28, 751–761.

    Google Scholar 

  • Burchard, W. (1994) Lichtstreuuntersuchungen an Polysaccharidlösungen.Das Papier 12, 755–764.

    Google Scholar 

  • Chanzy, H. (1991) personal communication.

  • Chanzy, H., Henrissat, B., Vuong, R. and Revol, J.-F. (1986) Structural changes of cellulose crystals during the reversible transformation cellulose I↔III1 in Valonia.Holzforschung 40, Suppl. 25–30.

    Google Scholar 

  • Chanzy, H., Paillet, M. and Hagege, R. (1990) Spinning of cellulose fromN-methylmorpholineN-oxide in the presence of additives.Polymer 31, 400–405.

    Google Scholar 

  • Debzi, E. M., Chanzy, H., Sugiyama, J., Tekely, P. and Excoffier, G. (1991) The 1α→1β transformation of highly crystalline cellulose by annealing in various mediums.Macromolecules 24, 6816–6822.

    Google Scholar 

  • Fink, H.-P. and Philipp, B. (1985) Models of cellulose structure from the viewpoint of the cellulose I → II transition.J. Appl. Polymer Sci. 30, 3779–3790.

    Google Scholar 

  • Fink, H.-P., Walenta, E. (1994) Röntgenbeugungsuntersuchungen zur übermolekularen Struktur von Cellulose im Verarbeitungsprozeß.Das Papier 12, 739–748.

    Google Scholar 

  • Fink, H.-P., Fanter, D. and Loth, F. (1982) Röntgen-Weitwinkeluntersuchungen zur Phasenumwandlung bei der Alkalisierang der Cellulose.Acta Polymerica 33, 241–245.

    Google Scholar 

  • Fink, H.-P., Fanter, D. and Philipp, B. (1985) Röntgenweitwinkeluntersuchungen zur übermolekularen Struktur beim Cellulose I–II Phasenübergang.Acta Polymerica 36, 1–8.

    Google Scholar 

  • Fink, H.-P., Hofmann, D. and Purz, H. J. (1990) Zur Fibrillarstruktur nativer Cellulose.Acta Polymerica 41, 131–137.

    Google Scholar 

  • Fink, H.-P., Hofmann, D. and Purz, H. J. (1993a) Lateral order in microfibrils of native and regenerated cellulose. InCellulosics: Pulp, Fibre and Environmental Aspects (J. F. Kennedy, G. O. Phillips, P. A. Williams eds). New York: Ellis Horwood, pp. 165–170.

    Google Scholar 

  • Fink, H.-P., Walenta, E., Kunze, J. and Mann, G. (1993b) Wide angle X-ray and solid state13C-NMR studies of cellulose alkalization. InEllis Horwood Series in Polymer Science and Technology (J. F. Kennedy, G. O. Phillips & P. A. Williams, eds). New York: Ellis Horwood Limited, 1994 (in press).

    Google Scholar 

  • Fink, H.-P., Ganster, J., Fraatz, J. and Nywlt, M. (1994) Relation between structure and mechanical properties of cellulosic man-made fibres. InProceedings of the AKZO-NOBEL conference ‘Challenges in Man-made Fibres’, Stockholm, May 30–June 3,1994.

  • Frey-Wyssling, A. and Mühlethaler, K. (1963) Die Elementarfibrillen der Cellulose.Makromol. Chemie 62, 25–30.

    Google Scholar 

  • Ganster, J., Fink, H.-P., Fraatz, J. and Nywlt, M. (1994) Relation between structure and elastic constants of man-made cellulosic fibers: I. A two phase anisotropic model with contiguity parameter.Acta Polymerica 45, 312–318.

    Google Scholar 

  • Gjonnes, J. and Norman, N. (1958) The use of half width and position of the lines in the X-ray diffractograms of native cellulose to characterize the structural properties of the samples.Acta Chem. Scan. 12, 2028–2033.

    Google Scholar 

  • Haase, J., Hosemann, R. and Renwanz, B. (1973) Parakristalline Gitterstörungen in Kettenrichtung von Cellulose I und II.Kolloid-Z. Z. Polym. 251, 871–875.

    Google Scholar 

  • Haase, J., Hosemann, R. and Renwanz, B. (1975) Axiale und laterale Ordnung in regenerierten Zellulosefasern.Cellulose Chem. Technol. 9, 513–527.

    Google Scholar 

  • Hayashi, J., Yamada, T. and Kimura, K. (1976) The change of the chain conformation of cellulose from type I to II.J. Appl. Polymer Sci., Appl. Polymer Symp. 28, 713–727.

    Google Scholar 

  • Hayashi, J., Nakagawa, J. and Asano, S. (1987) (1¯10) Molecular sheet structure of cellulose. Reprinted from 1987 International Dissolving Pulps Conference, Copyright, TAPPI, Technology Park/Atlanta, GA, USA.

    Google Scholar 

  • Hearle, J. W. S. (1958) A fringed fibril theory of structure in crystalline polymers.J. Polymer Sci. 28, 432–435.

    Google Scholar 

  • Hindeleh, A. M. (1980) Crystallinity, crystallite size, and physical properties of native Egyptian cottonText. Res. J. 50, 667–674.

    Google Scholar 

  • Hindeleh, A. M. and Johnson, D. J. (1974) Crystallinity and crystallite size measurement in cellulose fibres: 2. Viscose rayon.Polymer 15, 697–705.

    Google Scholar 

  • Hofmann, D. and Walenta, E. (1987) An improved single-line method for the wide-angle X-ray scattering profile analysis of polymers.Polymer 28, 1271–1276.

    Google Scholar 

  • Hofmann, D., Fink, H.-P. and Philipp, B. (1989) Lateral crystallite size and lattice distortions in cellulose II samples of different origin.Polymer 30, 237–241.

    Google Scholar 

  • Hosemann, R. W., Hentschel, M., Baltá-Calleja, F. J., Lopez Cabarcos, E. and Hindeleh, A. M. (1985) Bestimmung desα *-Wertes von Polymeren, Biopolymeren und Katalysatoren.Experimentelle Technik der Physik 33, 135–148.

    Google Scholar 

  • Ioelovitsch, M. J. (1992) Zur übermolekularen Struktur von nativen unde isolierten Cellulosen.Acta Polymer. 43, 110–113.

    Google Scholar 

  • Ioelovitsch, M. J. and Veveris, G. P. (1985) Investigation of size and defects of cellulose's crystalline regions.Chimija Drewes 6, 30–34.

    Google Scholar 

  • Jayme, G., Roffael, E. and Islam, Md. A. (1973) Über den Einfluß der Kristallitbreite von Cellulosen auf ihre Mercerisierungsresistenz.Das Papier 27, 589–591.

    Google Scholar 

  • Johnson, D. J. (1981) Crystallinity, crystallites size and lattice perfection in fibrous polymers.Advances in X-ray Analysis 24, 25–36.

    Google Scholar 

  • Kamide, K., Okajima, K. and Kowsaka, K. (1992) Dissolution of natural cellulose into aqueous alkali solution: Role of super-molecular structure of cellulose.Polymer Journal 24, 71–86.

    Google Scholar 

  • Käufer, M. (1984) Beziehungen zwischen Alkalisiergeschwindigkeit und Ordnungszustand von Polymeren.Das Papier 38, 583–589.

    Google Scholar 

  • Kim, N.-H., Sugiyama, J. and Okano, T. (1989) The behavior of cellulose fibers in the early stage of alkline swelling.Mokuzai Gakkaishi 35, 387–391.

    Google Scholar 

  • Kim, N.-H., Sugiyama, J. and Okano, T. (1990) X-ray and electron diffraction study of Na-cellulose I: Formation and its reconversion back to cellulose I.Mokuzai Gakkaishi 36, 120–125.

    Google Scholar 

  • Klug, H. P. and Alexander, L. E. (1974)X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. New York: John Wiley.

    Google Scholar 

  • Krässig, H. (1981) Morphologie, Ordnungs- und Orientierungsgrad und ihre Bedeutung für die Eigenschaften von Fasern und Filmen.Colloid u. Polymer Sci. 259, 1–14.

    Google Scholar 

  • Krässig, H. (1984) Struktur und Reaktivität von Cellulosefasern.Das Papier 38, 571–582.

    Google Scholar 

  • Kulshreshtha, A. K., Dweltz, N. E. and Radhakrishnan, T. J. (1971) Analysis of polymeric X-ray diffraction profiles I + II.J. Appl. Cryst. 4, 116–130.

    Google Scholar 

  • Kulshreshtha, A. K., Hunter, R. E. and Dweltz, N. E. (1973) A variance analysis of the line broadening of X-ray profiles from Fortisan,Polymer 14, 402–404.

    Google Scholar 

  • Lenz, J., Schurz, J., Wrentschur, E. and Geymayer, W. (1986) Die Dimensionen der kristallinen Bereiche in Fasern aus Regeneratcellulose.Angew. Makromol. Chem. 138, 1–19.

    Google Scholar 

  • Lenz, J., Schurz, J. and Wrentschur, E. (1988) The length of the crystalline domains in fibres of regenerated cellulose. Determination of the crystallite length of cellulose II by means of wide-angle X-ray diffraction and transmission electron microscopyHolzforschung 42, 117–122.

    Google Scholar 

  • Lenz, J., Schurz, J. and Wrentschur, E. (1993) Properties and structure of solvent-spun and viscose-type fibres in the swollen state.Colloid Polymer Sci. 271, 460–468.

    Google Scholar 

  • Meyer, K. H. and Misch, L. (1937) Positions des atomes dans le nouveau modele spatial de la cellulose.Helv. Chim. Acta 20, 232–244.

    Google Scholar 

  • Newman, R. H. (1994) Crystalline forms of cellulose in softwoods and hardwoods.J. Wood Chem. Technol. 14, 451–466.

    Google Scholar 

  • Nieduszynski, I. and Preston, R. D. (1970) Crystallite size in natural cellulose.Nature 225, 273–274.

    Google Scholar 

  • Nishimura, H. and Sarko, A. (1987) Mercerization of cellulose. IV. Mechanism of mercerization and crystallite sizes.J. Appl. Polymer Sci. 33, 867–874.

    Google Scholar 

  • Okano, T. and Sarko, A. (1984) Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures.J. Appl. Polymer Sci. 29, 4175–4182.

    Google Scholar 

  • Okano, T. and Sarko, A. (1985) Mercerization of cellulose. II. Alkali-cellulose intermediates and a possible mercerization mechanism.J. Appl. Polymer Sci. 30, 325–332.

    Google Scholar 

  • Philipp, B., Baudisch, J. and Ruscher, Ch. (1964) Strukturuntersuchungen an Celluloseregeneratfäden mit chemischen Accessibilitätsmethoden.Faserforsch. u. Textiltechn. 15, 30–39.

    Google Scholar 

  • Philipp, B., Kunze, J. and Fink, H.-P. (1987) Solid-state carbon-13 NMR and wide-angle X-ray scattering study of cellulose disordering by alkali treatment. InThe Structures of Cellulose, ACS Symposium Series 340. Washington DC: American Chemical Society, p. 178.

    Google Scholar 

  • Revol, J.-F. (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa.Carbohydrate Polymers 2, 123–134.

    Google Scholar 

  • Schurz, J., Jánosi, A. and Zipper, P. (1987) Röntgenographische Kristallinitätsuntersuchungen an Zellstoffen.Das Papier 41, 673–679.

    Google Scholar 

  • Shenouda, S. G. and Viswanathan, A. (1972) Crystalline character of native and chemically treated Egyptian cottons. II. Computation of variance of X-ray line profile and paracrystalline lattice distortions.J. Appl. Polymer Sci. 16, 395–406.

    Google Scholar 

  • Stokes, A. R. (1948) A numerical Fourier-analysis method for the correction of widths and shapes of lines on X-ray powder photographs.Proc. Phys. Soc. Lond. (A)61, 382–391.

    Google Scholar 

  • Sugiyama, J., Harada, H., Fujiyoshi, Y. and Uyeda, N. (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall ofValonia macrophysa Kütz.Planta 166, 161–168.

    Google Scholar 

  • Sugiyama, J., Vuong, R. and Chanzy, H. (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall.Macromolecules 24, 4168–4175.

    Google Scholar 

  • Sugiyama, J., Chanzy, H. and Revol, J. F. (1994) On the polarity in the cell wall of Valonia.Planta 193, 260–265.

    Google Scholar 

  • Tsuji, M., Frank, J. and Manley, R. St. J. (1986) Image analysis in the electron microscopy of cellulose protofibrils. II. Digital correlation methods.Colloid Polymer Sci. 264, 89.

    Google Scholar 

  • VanderHart, D. L. and Atalla, R. H. (1984) Studies of microstructure in native celluloses using solid-state13C NMR.Macromolecules 17, 1465.

    Google Scholar 

  • Wada, M., Sugiyama, J. and Okano, T. (1993) Native celluloses on the basis of two crystalline phase (Iα/Iβ) system.J. Appl. Polymer Sci. 49, 1491–1496.

    Google Scholar 

  • Warrier, J. K. S. and Chidambareswaren, P. K. (1993) New findings on the lateral order distribution in cotton fibers. InCellulosics: Pulp, Fibre and Environmental Aspects (J. F. Kennedy, G. O. Phillips, P. A. Williams, eds). New York: Ellis Horwood, pp. 171–175.

    Google Scholar 

  • Warwicker, J. O., Jeffries, R., Colbran, R. L. and Robinson, R. N. (1966) A review of the literature on the effect of caustic soda and other swelling agents on the fine structure of cotton.Shirley Institute Pamphlet 93.

  • Watanabe, S., Hayashi, J. and Akahori, T. (1974) Molecular chain conformation and crystallite structure of cellulose. I. Fine structure of Rayon fibers.J. Polym. Sci. Chem. 12, 1065–1087.

    Google Scholar 

  • Xue-Hai, L., Rui-Xun, L. and Chieh, K. (1981) Effects of cellulose IV on viscose fiber properties.Cellulose Chem. Technol. 15, 397–409.

    Google Scholar 

  • Yamamoto, H. and Horii, F. (1993) CP/MAS13CNMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures.Macromolecules 26, 1313–1317.

    Google Scholar 

  • Yamamoto, H., Horii, F. and Odani, H. (1989) Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperaturesMacromolecules 22, 4130–4132.

    Google Scholar 

  • Yamashiki, T., Matsui, T., Kowsaka, K., Saitoh, M., Okajima, K. and Kamide, K. (1992) New class of cellulose fiber spun from the novel solution of cellulose by wet spinning method.J. Appl. Polymer Sci. 44, 691–698.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fink, H.P., Hofmann, D. & Philipp, B. Some aspects of lateral chain order in cellulosics from X-ray scattering. Cellulose 2, 51–70 (1995). https://doi.org/10.1007/BF00812772

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00812772

Keywords

Navigation