Skip to main content
Log in

Nitroarginine, an inhibitor of nitric oxide synthetase, attenuates ammonia toxicity and ammonia-induced alterations in brain metabolism

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have proposed that acute ammonia toxicity is mediated by activation of the N-methyl-D-aspartate type of glutamate receptors. MK-801, a selective antagonist of these receptors, prevents death of animals induced by acute ammonia intoxication as well as ammonia-induced depletion of ATP. It seems therefore that, following activation of the N-methyl-D-aspartate receptors, the subsequent events in ammonia toxicity should be similar to those involved in glutamate neurotoxicity. As it has been shown that inhibitors of nitric oxide synthetase such as nitroargnine prevent glutamate toxicity, we have tested whether nitroarginine prevents ammonia toxicity and ammonia-induced alterations in brain energy and ammonia metabolites. It is shown that nitroarginine prevents partially (≈50%), but significantly death of mice induced by acute ammonia intoxication. Nitroarginine also prevents partially ammonia-induced depletion of brain ATP. It also prevents completely the rise in glucose and pyruvate and partially that in lactate. Injection of nitroarginine alone, in the absence of ammonia, induces a remarkable accumulation of glutamine and a decrease in glutamate. The results reported indicate that nitroarginine attenuates acute ammonia toxicity and ammonia-induced alterations in brain energy metabolites. The effects of MK-801 and of nitroarginine are different, suggesting that ammonia can induce nitric oxide synthetase by mechanisms other than activation of N-methyl-D-aspartate receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bessman, S. P. and Bessman, A. N. 1955. The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J. Clin. Invest. 34:622–628

    Google Scholar 

  2. Fischer, J. E., and Baldessarini, R. J. 1971. False neurotransmitters and hepatic failure. Lancet II, 75–79

    Google Scholar 

  3. James, J. H., Ziparo, V., Jeppson, B., and Fischer, J. E. 1979. Hyperammonemia, plasma amino acid imbalance and blood-brain amino acid transport: a unified theory of portal systemic encephalopathy. Lancet II, 772–775

    Google Scholar 

  4. Zieve, L., Doizaki, W. M., and Zieve, F. J. 1974. Synergism between mercaptans and ammonia in the production of coma: a possbile role for mercaptans in the pathogenesis of hepatic coma. J. Lab. Clin. Invest. 83:16–28

    Google Scholar 

  5. Schafer, D. F. and Jones, E. A. 1982 Hepatic encephalopathy and the Γ-aminobutyric acid neurotransmitter system. Lancet II, 18–19

    Google Scholar 

  6. Marcaida, G., Felipo, V., Hermenegildo, C., Miñana, M. D., and Grisolía, S. 1992. Actute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Lett. 296:67–68

    Google Scholar 

  7. Hawkins, R. A., Miller, A. L., Nielsen, R. C., and Veech, R. L. 1973. The acute action of ammonia on rat brain metabolism in vivo. Biochem. J. 134:1001–1008

    Google Scholar 

  8. Hindfelt, B., and Siesjo, B. K. 1971. Cerebral effects of acute ammonia intoxication. Scand. J. Clin. Lab. Invest. 28:365–374

    Google Scholar 

  9. Hindfelt, B., Plum, F., and Duffy, T. E. 1977. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J. Clin. Invest. 59:386–396

    Google Scholar 

  10. Kosenko, E., Kaminsky, Y. G., Felipo, V., Miñana, M. D., and Grisolía, S. 1993. Chronic hyperammonemia prevents changes in brain energy and ammonia metabolites induced by acute ammonia intoxication. Biochim. Biophys. Acta 1180:321–326

    Google Scholar 

  11. Felipo, V., Grau, E., Miñana, M. D., and Grisolía, S. 1993. Ammonium injection induces an N-methyl-D-aspartate receptor mediated proteolysis of the microtubule-associated protein MAP-2. J. Neurochem. 60:1626–1630

    Google Scholar 

  12. Felipo, V., Grau, E., Miñana, M. D., and Grisolía, S. 1994. Activation of NMDA receptor mediates the toxicity of ammonia and the effects of ammonia on the microtubule-associated protein MAP-2. Adv. Exp. med. Biol. 341:83–94

    Google Scholar 

  13. Kosenko, E., Kaminsky, Y., Grau, E., Miñana, M. D., Marcaida, G., Grisolía, S., and Felipo, V. 1994. Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and of Na+/K+-ATPase. J. Neurochem. 63:2172–2178

    Google Scholar 

  14. Faraci, F., and Breese, K. R. 1993. Nitric oxide mediates vasodilatation in response to activation of N-methyl-D-aspartate receptors in brain. Circ. Res. 72:476–480

    Google Scholar 

  15. Garthwaite, J., Charles, S. L., and Chess-Williams, R. 1991. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–388

    Google Scholar 

  16. Izumi, Y., Clifford, D. B., and Zorumski, C. F. 1992. Inhibition of long term potentiation by NMDA-mediated nitric oxide release. Science 257:1273–1276

    Google Scholar 

  17. Manev, H., Favaron, M., Guidotti, A., and Costa, E. 1989. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol. 36:106–112

    Google Scholar 

  18. Meldrum, B., and Garthwaite, J. 1990. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11:379–387

    Google Scholar 

  19. Choi, D. W. 1992. Excitotoxic cell death. J. Neurobiol. 23:1261–1276

    Google Scholar 

  20. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., and Snyder, S. H. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88:6368–6371

    Google Scholar 

  21. Izumi, Y., Benz, A. M., Clifford, D. B., and Zorumski, C. F. 1993. Nitric oxide inhibitors attenuate N-methyl-D-aspartate excitotoxicity in rat hippocampal slices. Neurosci. lett. 135:227–230

    Google Scholar 

  22. Vigé, X., Carreau, A., Scatton, B., and Nowicki, J. P. 1993. Antagonism by NG-nitro-L-arginine of L-glutamate-induced neurotoxicity in cultured neonatal rat cortical neurons. Prolonged application enhances neuroprotective efficacy. Neuroscience 55: 893–901

    Google Scholar 

  23. Kunst, A., Draeger, B., and Ziegenhorn, J. 1984. Glucose, In: Methods of Enzymatic Analysis (Bergmeyer, H. U., ed). 3rd ed, Vol. 6, 163–172, Verlag Chemie, Weinheim

    Google Scholar 

  24. Transtschold, I., Lamprecht, W., and Schweitzer, G. 1985. Adenosine-5′-triphosphate: UV method with hexokinase and glucose-6-phosphate dehydrogenase. pages 346–357,in Bergmeyer, H. U., (ed.) Methods of Enzymatic Analysis 3rd ed, Vol 7, Verlag Chemie, Weinheim.

    Google Scholar 

  25. Jaworet, D. and Welsch, J. 1985. Adenosine-5′-diphosphate and adenosine-5′-monophosphate. pages 365–370,in Bergmeyer, H. U., (ed.) Methods of Enzymatic Analysis 3rd ed, Vol 7, Verlag Chemie, Weinheim.

    Google Scholar 

  26. Noll, F. 1984. Lactate, pages 582–589,in Bergmeyer, H. U., (ed.) Methods of Enzymatic Analysis 3rd ed, Vol 6, Verlag Chemie, Weinheim.

    Google Scholar 

  27. Lamprecht, W. and Heinz, P. 1984. Pyruvate. pages 570–577,in Bergmeyer, H. U., (ed.) Methods of Enzymatic Analysis 3rd ed, Vol 6, Verlag Chemie, Weinheim

    Google Scholar 

  28. Bernt, E. and Bergmeyer, H. U. 1974. Glutamate. Pages 1704–1708,in Bergmeyer, H. U., (ed.) Methods of Enzymatic Analysis 2nd ed, Vol 4, Verlag Chemie, Weinheim

    Google Scholar 

  29. Lund, P. 1974. Glutamine: determination with glutaminase, and glutamate dehydrogenase. Pages 1719–1722,in Bergmeyer, H. U., (ed.) Methods of Enzymatic Analysis 2nd ed, Vol 4, Verlag Chemie, Weinheim

    Google Scholar 

  30. Taussky, H. H. and Shorr, E. 1953. A microcolorimetric method for the determination of inorganic phosphorous. J. Biol. Chem. 202:675–685

    Google Scholar 

  31. Bergmeyer, H. U. and Beutler, H. O. 1985. Ammonia. Pages 454–461,in Bergmeyer, H. U., (ed.) Methods of Enzymatic Analysis 3rd ed, Vol 8, Verlag Chemie, Weinheim

    Google Scholar 

  32. Atkinson, D. E. and Walton, G. M. 1967. Adenosine triphosphate conservation in metabolic regulation: rat liver citrate cleavage enzyme. J. Biol. Chem. 242:3239–3241

    Google Scholar 

  33. Meister, A. 1985. Glutamine synthetase from mammalian tissues. Methods in Enzymol. 113:185–199

    Google Scholar 

  34. Hahn, M., Massen, O., Nenchi, M. and Pavlov, I. 1893. Die Eck'sche fistel zwischen der unteren hohlvene und der pfortader und ihre folgen für den organismus. Arch. Exp. Path. Pharmak. 32:161–173

    Google Scholar 

  35. Choi, D. W. 1987. Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7:369–379

    Google Scholar 

  36. Novelli, A., Reilly, J. A., Lysko, P. G., and Henneberry, R. C. 1988. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 451:205–212

    Google Scholar 

  37. Thomas, G. and Ramwell, P. W. 1988. Vasodilatory properties of mono-L-arginine containing compounds. Biochem. Biophys. Res. Commun. 154:332–338

    Google Scholar 

  38. Wettstein, M., Gerok, W., and Häussinger, D. 1994. Endotoxin-induced nitric oxide synthesis in the perfused rat liver: effects ofL-arginine and ammonium chloride. Hepatology 19:641–647

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosenko, E., Kaminsky, Y., Grau, E. et al. Nitroarginine, an inhibitor of nitric oxide synthetase, attenuates ammonia toxicity and ammonia-induced alterations in brain metabolism. Neurochem Res 20, 451–456 (1995). https://doi.org/10.1007/BF00973101

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973101

Key Words

Navigation