Skip to main content
Log in

Scaling behavior of surface irregularity in the molecular domain: From adsorption studies to fractal catalysts

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For an unexpected variety of solids, the surface topography from a few up to as many as a thousand angstroms is very well described by fractal dimension,D. This follows from measurements of the number of molecules in surface monolayers, as function of adsorbate or adsorbent particle size. As an illustration, we present a first case, amorphous silica gel, whereD has been measured independently by each of the two methods. (The agreement, 3.02±0.06 and 3.04±0.05, is excellent, and the result is modeled by a “heavy” generalized Menger sponge.) The examples as a whole divide into amorphous and crystalline materials, but presumably all of them are to be modeled as random fractal surfaces. The observedD values exhaust the whole range between 2 and 3, suggesting that there are a number of different mechanisms by which such statistically self-similar surfaces form. We show that fractal surface dimension entails interfacial power laws much beyond what is the source of theseD values. Examples are reactive scattering events when neutrons of variable flux pass the surface (this is of interest for locating fractal substrates that may support adlayer phase transitions); the rate of diffusion-controlled chemical reactions at fractal surfaces; and the fractal implementation of the traditional idea that the active sites of a catalyst are edge and apex sites on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Avnir and P. Pfeifer,Nouv. J. Chim. 7:71 (1983).

    Google Scholar 

  2. P. Pfeifer, D. Avnir, and D. Farin,Surf. Sci. 126:569 (1983).

    Google Scholar 

  3. P. Pfeifer and D. Avnir,J. Chem. Phys. 79:3558 (1983);80:4573 (1984).

    Google Scholar 

  4. D. Avnir, D. Farin, and P. Pfeifer,J. Chem. Phys. 79:3566 (1983).

    Google Scholar 

  5. D. Avnir, D. Farin, and P. Pfeifer,Nature 308:261 (1984).

    Google Scholar 

  6. P. Pfeifer,Appl. Surf. Sci. 18:146 (1984).

    Google Scholar 

  7. D. Avnir, D. Farin, and P. Pfeifer,J. Colloid Interface Sci., in press.

  8. B. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    Google Scholar 

  9. R. S. Sayles and T. R. Thomas,Nature 271:431 (1978); M. V. Berry and J. H. Hannay,Nature 273:573 (1978); P. A. Burrough,Nature 294:240 (1981).

    Google Scholar 

  10. H. G. E. Hentschel and I. Procaccia,Phys. Rev. A 28:417 (1983).

    Google Scholar 

  11. S. Lovejoy,Science 216:185 (1982).

    Google Scholar 

  12. E. Jakeman,Nature 307:110 (1984).

    Google Scholar 

  13. L. Niemeyer, L. Pietronero, and H. J. Wiesmann,Phys. Rev. Lett. 52:1033 (1984).

    Google Scholar 

  14. D. Paumgartner, G. Losa, and E. R. Weibel,J. Microscopy 121:51 (1981).

    Google Scholar 

  15. J. E. Avron and B. Simon,Phys. Rev. Lett. 46:1166 (1981).

    Google Scholar 

  16. M. Suzuki,Progr. Theor. Phys. 69:65 (1983).

    Google Scholar 

  17. A. Kapitulnik, A. Aharony, G. Deutscher, and D. Stauffer,J. Phys. A 16:L269 (1983); D. C. Hong and H. E. Stanley,J. Phys. A 16:L475 (1983), and references cited therein.

    Google Scholar 

  18. S. Havlin and D. Ben-Avraham,Phys. Rev. A 26:1728 (1982).

    Google Scholar 

  19. I. Magid, Z. Djordjevic, and H. E. Stanley,Phys. Rev. Lett. 51:143 (1983).

    Google Scholar 

  20. T. A. Witten and P. Meakin,Phys. Rev. B 28:5632 (1983); H. Gould, F. Family, and H. E. Stanley,Phys. Rev. Lett. 51:686 (1983); F. Family,Phys. Rev. Lett. 51:2112 (1983); P. Meakin,Phys. Rev. Lett. 51:1119 (1983); M. Kolb, R. Botet, and R. Jullien,Phys. Rev. Lett. 51:1123 (1983).

    Google Scholar 

  21. P. Bak,Rep. Progr. Phys. 45:587 (1982).

    Google Scholar 

  22. D. J. Thouless and Q. Niu,J. Phys. A 16:1911 (1983); R. E. Prange, D. R. Grempel, and S. Fishman,Phys. Rev. B 28:7370 (1983), and references cited therein.

    Google Scholar 

  23. D. Campbell and H. Rose, eds.,Order in Chaos, Physica 7D (1983), Chap. 4.

  24. C. P. Allen, J. T. Colvin, D. G. Stinson, C. P. Flynn, and H. J. Stapleton,Biophys. J. 38:299 (1982).

    Google Scholar 

  25. R. F. Voss, R. B. Laibowitz, and E. I. Allessandrini,Phys. Rev. Lett. 49:1441 (1982); A. Kapitulnik and G. Deutscher,Phys. Rev. Lett. 49:1444 (1982).

    Google Scholar 

  26. M. S. Wolfe, 57th Colloid and Surface Science Symposium, Toronto, 1983.

  27. D. A. Weitz and M. Oliveria, preprint (1983).

  28. B. H. Kaye,Direct Characterization of Fineparticles (Wiley, New York, 1981), Chapter 10.3; S. Peleg, J. Naor, R. Hartley, and D. Avnir,IEEE Trans. Pattern Anal. Machine Intel!., in press.

    Google Scholar 

  29. Y. Gefen, A. Aharony, and B. B. Mandelbrot,J. Phys. A 16:1267 (1983); J. A. Given and B. B. Mandelbrot,J. Phys. B 16:L565 (1983).

    Google Scholar 

  30. G. Binnig and H. Rohrer,Helv. Phys. Acta 55:726 (1982).

    Google Scholar 

  31. A. W. Adamson,Physical Chemistry of Surfaces, 4th ed. (Wiley, New York, 1982); S. J. Gregg and K. S. W. Sing,Adsorption, Surface Area, and Porosity, 2nd ed. (Academic Press, London, 1982).

    Google Scholar 

  32. D. Farin, D. Avnir, and P. Pfeifer,Langmuir 1, to appear.

  33. U. Welz, H. Wippermann, and P. Pfeifer, unpublished.

  34. P. G. Watson, inPhase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds. (Academic Press, London, 1972), p. 101.

    Google Scholar 

  35. Y. Gefen, B. B. Mandelbrot, and A. Aharony,Phys. Rev. Lett. 45:855 (1980); Y. Gefen, Y. Meir, B. B. Mandelbrot, and A. Aharony,Phys. Rev. Lett. 50:145 (1983); Y. Gefen, A. Aharony, and B. B. MandelbrotJ. Phys. A 16:1267 (1983).

    Google Scholar 

  36. R. Jackson,Transport in Porous Catalysts (Elsevier, Amsterdam, 1977); R. E. Cunningham and R. J. J. Williams,Diffusion in Gases and Porous Media (Plenum Press, New York, 1980); E. A. Mason and A. P. Malinauskas,Gas Transport in Porous Media: The Dusty-Gas Model (Elsevier, Amsterdam, 1983).

    Google Scholar 

  37. R. J. Good and R. S. Mikhail,Powder Technol. 29:53 (1981).

    Google Scholar 

  38. M. V. Berry,J. Phys. A 12:781 (1979); M. V. Berry and T. M. Blackwell,J. Phys. A 14:3101 (1981).

    Google Scholar 

  39. H. Steinhaus,Coll. Math. 3:1 (1954).

    Google Scholar 

  40. P.-G. de Gennes,C. R. Acad. Sci. Paris, Ser. II 295:1061 (1982).

    Google Scholar 

  41. A. Le Mehaute and G. Crepy,C. R. Acad. Sci. Paris, Ser. II 295:685 (1982); A. Le Mehaute and G. Crepy, inFast Ion Transport in Solids (North-Holland, Amsterdam, 1984) to appear.

    Google Scholar 

  42. F. H. Constable, inHandbuch der Katalyse, Vol. 5, G.-M. Schwab, ed. (Springer, Vienna, 1957), p. 141; D. Kalló, inContact Catalysis, Vol. 1, Z. G. Szabó, ed. (Elsevier, Amsterdam, 1976), p. 306.

    Google Scholar 

  43. H. Kral,Ber. Bunsen-Ges. 75:1114 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeifer, P., Avnir, D. & Farin, D. Scaling behavior of surface irregularity in the molecular domain: From adsorption studies to fractal catalysts. J Stat Phys 36, 699–716 (1984). https://doi.org/10.1007/BF01012933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012933

Key words

Navigation