Skip to main content
Log in

Limits on strength and deformation properties of jointed basaltic rock masses

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary

A study of strength and deformation measurements for basaltic rocks, along with consideration of the influence of fracturing using a rock mass classification system, documents the range of brittle response for basaltic rock masses. Although basalts vary widely in composition and other physical factors, many of the properties of a basaltic rock mass appear to vary within a factor of about 10. Typical values of strength parameters for intact basalt at ambient temperature (20°C) and negligible confining pressure are Young's modulus, 78±19 GPa; Poisson's ratio, 0.25±0.05; tensile strength, −14.5±3.3 MPa; unconfined compressive strength, 266±98 MPa; and conhesion, 66 MPa. Corresponding values for a basaltic rock mass that incorporate the weakening effects of scale are deformation modulus, 10–40 GPa; Poisson's ratio, 0.3; tensile strength, −0.1 to −2.5 MPa; uniaxial compressive strength, 10–90 MPa; and cohesion, 0.6–6 MPa. A measured deformation modulus for ambient pressure in the vertical direction, 20 GPa, is 1.5–3 times larger than that in the horizontal directions, 13.5 and 6.5 GPa, reflecting strength anisotropy due to column or block geometry for one particular basalt. Values of tensile and cohesive strength for the basaltic rock mass are generally one to two orders of magnitude lower than corresponding values for intact basalt. The shear strength of joints appears to vary considerably from flow to flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aydin, A., DeGraff, J. M. (1988): Evolution of polygonal fracture patterns in lava flows. Science 239, 471–476.

    Google Scholar 

  • Bandis, S., Lumsden, A. C., Barton, N. R. (1981): Experimental studies of scale effects on the shear behaviour of rock joints. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 18, 1–21.

    Google Scholar 

  • Barton, N. (1976): The shear strength of rock and rock joints. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 13, 255–279.

    Google Scholar 

  • Barton, N. (1990): Scale effects or sampling bias? In: Cunha, A. P. (ed.), Scale effects in rock masses. Balkema, Rotterdam, 31–55.

    Google Scholar 

  • Bieniawski, Z. T. (1978): Determining rock mass deformability — Experience from case histories. Int. J. Rock Mech. Min. Sci. 15, 237–247.

    Google Scholar 

  • Bieniawski, Z. T. (1989): Engineering rock mass classifications. Wiley, New York, 251 pp.

    Google Scholar 

  • Bieniawski, Z. T. (1993): Classification of rock masses for engineering: The RMR system and future trends. In: Hudson, J. A., Hoek, E. (eds.), Comprehensive rock engineering, vol. 3, Pergamon, New York, 553–573.

    Google Scholar 

  • Brace, W. F. (1964): Brittle fracture of rocks. In: Judd, W. R. (ed.), State of stress in the Earth's crust. Elsevier, New York, 111–180.

    Google Scholar 

  • Brady, B. H. G., Brown, E. T. (1992): Rock mechanics for underground mining, 2nd. ed. Chapman and Hall, London, 571 pp.

    Google Scholar 

  • Brown, E. T., Hoek, E. (1988): Determination of shear failure envelope in rock masses. J. Geotech. Engng. Div. ASCE 114, 371–376.

    Google Scholar 

  • Byerlee, J. (1978): Friction of rocks. Pure Appl. Geophys. 116, 615–626.

    Google Scholar 

  • Cramer, M. L., Dischler, S. A., Erb, D. B., Berlin, G. T., Wittreich, C. D. (1987): Geomechanical testing development for the Basalt Waste Isolation Project. In: Proc., 28th U.S. Symposium on Rock Mechanics, Balkema, Rotterdam, 1053–1062.

    Google Scholar 

  • Deere, D. U. (1963): Technical description of cores for engineering purposes. Rock Mech. Eng. Geol. 1, 16–22.

    Google Scholar 

  • DeGraff, J. M., Aydin, A. (1987): Surface morphology of columnar joints and its significance to mechanics and direction of joint growth. Geol. Soc. Am. Bull. 99, 605–617.

    Google Scholar 

  • DeGraff, J. M., Aydin, A. (1993): Effect of thermal regime on growth increment and spacing of contraction joints in basaltic lava. J. Geophys. Res. 98, 6411–6430.

    Google Scholar 

  • Dietz, H. B. (1985): The in situ test program for site characterization of basalt. In: Côme, B., Johnston, P., Müller, A. (eds.), Design and instrumentation of in situ experiments in underground laboratories for radioactive waste disposal. Balkema, Rotterdam, 82–92.

    Google Scholar 

  • Goodman, R. E. (1989): Introduction to rock mechanics, 2nd ed. Wiley, New York, 562 pp.

    Google Scholar 

  • Gupta, D. C., Daemen, J. J. K. (1988): Rock mechanics investigations for deep underground disposal of radioactive waste. In: Singh, B. (ed.), Underground engineering, vol. 1. Balkema, Rotterdam, 461–470.

    Google Scholar 

  • Hoek, E. (1983): Strength of jointed rock masses, twenty-third Rankine lecture. Géotechnique 33, 187–223.

    Google Scholar 

  • Hoek, E., Brown, E. T. (1980): Empirical strength criterion for rock masses. J. Geotech. Engng. Div. ASCE 106, 1013–1035.

    Google Scholar 

  • Jaeger, J. C., Cook, N. G. W. (1979): Fundamentals of rock mechanics, 3rd. ed. Chapman and Hall, London, 593 pp.

    Google Scholar 

  • Johnson, B., Friedman, M., Hopkins, T. W. (1987): Strength and microfracturing of Westerly granite extended wet and dry at temperatures to 800°C and pressures to 200 MPa. In: Proc., 28th U.S. Symposium on Rock Mechanics, Balkema, Rotterdam 399–412.

    Google Scholar 

  • Kulhawy, F. H. (1975): Stress deformation properties of rock and rock discontinuities. Eng. Geol. 9, 327–350.

    Google Scholar 

  • Lajtai, E. Z. (1991): Time-dependent behaviour of the rock mass. Geotech. Geol. Eng. 9, 109–124.

    Google Scholar 

  • Pan, X. D., Hudson, J. A. (1988): A simplified three-dimensional Hoek-Brown yield criterion. In: Romana, M. (ed.), Rock mechanics and power plants, vol. 1, Balkema, Rotterdam, 95–103.

    Google Scholar 

  • Priest, S. D. (1993): Discontinuity analysis for rock engineering. Chapman and Hall, London, 473 pp.

    Google Scholar 

  • Reidel, S. P., Tolan, T. L., Hooper, P. R., Beeson, M. H., Fecht, K. R., Bentley, R. D., Anderson, J. L. (1989a): The Grande Ronde Basalt, Columbia River Basalt Group; stratigraphic descriptions and correlations in Washington, Oregon, and Idaho. In: Reidel, S. P., Hooper, P. R. (eds.), Volcanism and tectonism in the Columbia River flood-basalt provine. Geological Society of America, Boulder, Special Paper 239, 21–53.

    Google Scholar 

  • Reidel, S. P., Fecht, K. R., Hagood, M. C., Tolan, T. L. (1989b): The geologic evolution of the central Columbia Plateau. In: Reidel, S. P., Hooper, P. R. (eds.), Volcanism and tectonism in the Columbia River flood-basalt province. Geological Society of America, Boulder, Special Paper 239, 247–264.

    Google Scholar 

  • Rohde J., Feng, H. (1990): Analysis of the variability of unconfined compression tests of rock. Rock Mech. Rock Engng. 23, 231–236.

    Google Scholar 

  • Rubin, A. M., Pollard, D. D. (1987): Origins of blade-like dikes in volcanic rift zones. In: Decker, R. W., Wright, T. L., Stauffer, P. H. (eds.), Volcanism in Hawaii, U.S. Geol. Surv. Prof. Pap. 1350, 1449–1470.

  • Scholz, C. H. (1990): The mechanics of earthquakes and faulting. Cambridge University Press, New York, 439 pp.

    Google Scholar 

  • Schultz, R. A. (1993): Brittle strength of basaltic rock masses with applications to Venus. J. Geophys. Res. 98, 10,883–10,895.

    Google Scholar 

  • Ucar, R. (1986): Determination of shear failure envelope in rock masses. J. Geotech. Engng. Div. ASCE 112, 303–315.

    Google Scholar 

  • U.S. Department of Energy (1988): Consultation draft, site characterization plan, reference repository location, Hanford site, Washington. Report Nr. DOE/RW-0164, vol. 2.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, R.A. Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mech Rock Engng 28, 1–15 (1995). https://doi.org/10.1007/BF01024770

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01024770

Keywords

Navigation