Skip to main content
Log in

Thermal expansion and cracking of three confined water-saturated igneous rocks to 800°C

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary

Solutions of engineering problems of very deep drilling, geothermal energy production, and high-level nuclear-waste isolation require adequate understanding of the mechanical and transport properties of rocks at relatively low pressures but high temperatures. Accordingly, the thermal expansions of water-saturated Charcoal Granite, Mt. Hood Andesite, and Cuerbio Basalt have been measured at effective confining pressures (P e ) of 5, 50, and 100 MPa to 800° C. The mean coefficient of linear thermal expansion (α) is a function of lithology,P e , temperature (T) and initial porosity (ϕ). For example, for the Charcoal Granite, α increases withT at all pressures. The signature of the alpha-beta transition of quartz is more pronounced at the lower pressures; at 100 MPa α nearly mimics that of a crack-free rock forT<300° C.

α for the andesite atP e =5 MPa ranges from 10 to 15×10−6/°C from 200° to 400° C then decreases gradually to 10.1×10−6/°C at 800° C. At 50 MPa α ranges from 11.7×10−6/°C at 100° C to 8.6×10−6 at 200°C, then increases at a much lower rate to 11×10−6 at 600° C. The basalt, however, has an essentially constant α (11×10−6/°C) forT>150°C at the lower pressure and shows but a small increase in α from 6 to 9×10−6 from 100° to 800° C at 50 MPa.

The difference between measured values of thermal expansion and those calculated from simple mixture-theory relates to new crack porosity generated as a result of differential thermal expansion at the anisotropic grain scale. For the granite, a two to three order of magnitude increase in permeability (k) is predicted from the relation,kφ 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer, S. J., Johnson, B. (1979): Effects of Slow Uniform Heating on the Physical Properties of Westerly and Charcoal Granites. Proc. 20th U. S. Symp. Rock Mechanics, Univ. Texas, Austin, 7–18.

  • Bauer, S. J., Handin, J. (1981): Thermal Expansion of Three Water-Saturated Igneous Rocks to 800° C at Effective Confining Pressures of 5 and 50 MPa (Abstract). Am. Geophys. Union Trans.62, 393.

    Google Scholar 

  • Bauer, S. J., Friedman, M., Handin, J. (1981): Effects of Water-Saturation on Strength and Ductility of Three Igneous Rocks at Effective Pressures to 50 MPa and Temperatures to Partial Melting. Proc. 22nd U. S. Symp. Rock Mechanics, Massachusetts Institute of Technology, 73–78.

  • Brace, W. F. (1965): Some New Measurements of Linear Compressibility of Rocks. J. Geophys. Research70, 391–398.

    Google Scholar 

  • Brace, W. F., Orange, A. S., Madden, T. R. (1965): The Effect of Pressure on the Electrical Resistivity of Water-Saturated Crystalline Rocks. J. Geophys. Research70, 5669–5678.

    Google Scholar 

  • Brace, W. F., Walsh, J. B., Frangos, W. T. (1968): Permeability of Granite Under High Pressure. J. Geophys. Research73, 2225–2236.

    Google Scholar 

  • Brace, W. F., Silver, E., Hadley, K., Goetze, C. (1972): Cracks and Pores — A Closer Look. Science178, 162.

    Google Scholar 

  • Bruner, W. M. (1979): Crack Growth and the Thermoelastic Behavior of Rocks. J. Geophys. Research84, 5578–5590.

    Google Scholar 

  • Coe, R. S., Paterson, M. S. (1969): The α—β Inversion in Quartz: A Coherent Phase Transition Under Non-Hydrostatic Stress. J. Geophys. Research74, 4921–4948.

    Google Scholar 

  • Cooper, H. W., Simmons, G. (1977): The Effect of Cracks on the Thermal Expansion of Rocks. Earth Planet. Sci. Ltrs.36, 404–412.

    Google Scholar 

  • Durham, W. B., Abey, A. E. (1981): The Effect of Temperature and Pressure on the Thermal Properties of a Salt and a Quartz Monzonite. Proc. 22nd U. S. Symp. Rock Mechanics, Massachusetts Institute of Technology, 79–84.

  • Foundation Sciences, Inc. (1976): Thermal/Mechanical Properties of Pomona Member Basalt — Full-Scale Heater Test#1. Rockwell Hanford Operation, RHO-BWI-C-76, Richland, Washington.

  • Friedman, M., Johnson, B. (1978): Thermal Cracks in Unconfined Sioux Quartzite: Proc. 19th U. S. Symp. Rock Mechanics, Univ. Nevada, Reno, 423–430.

  • Friedman, M., Handin, J., Higgs, N. G., Lantz, J. R. (1979): Strength and Ductility of Four Dry Igneous Rocks at Low Pressures and Temperatures to Partial Melting. Proc. 20th U. S. Symp. Rock Mech., Univ. Texas, Austin, 35–50.

  • Gangi, A. F. (1978): Variation of Whole and Fractured Porous Rock permeability with Confining Pressure. Intern. J. Rock Mech. Min. Sci.15, 249–257.

    Google Scholar 

  • Green, S. J. (Chairman) (1979): Limitations of Rock Mechanics in Energy-Resource Recovery and Development. Panel on Rock-Mechanics Problems That Limit Energy-Resource Recovery and Development, U. S. National Committee for Rock Mechanics, National Academy of Sciences, Washington, D. C.

  • Hadley, K. (1976): Comparison of Calculated and Observed Crack densities and Seismic Velocities in Westerly Granite. J. Geophys. Research81, 3484–3494.

    Google Scholar 

  • Handin, J., Heard, H. C. (1980): Laboratory Investigations,in: Proc. Work-shop on Thermomechanical-Hydrochemical Modeling for Hardrock Waste Repository. Lawrence Berkeley Laboratory, LBL-11204, 105–107.

  • Heard, H. C. (1980): Thermal Expansion and Inferred Permeability of Climax Quartz Monzonite to 300° C and 27.6 MPa. Intern. Jour. Rock Mech. Min. Sci.17, 289–296.

    Google Scholar 

  • Heard, H. C., Page, L. (1982): Elastic Moduli, Thermal Expansion, and Inferred Permeability of Two Granites to 350° C and 55 MPa. J. Geophys. Research87, 9340–9348.

    Google Scholar 

  • Jaeger, J. C., Cook, N. G. W. (1979): Fundamentals of Rock Mechanics. 3rd Edition. London: Chapman and Hall 593 p.

    Google Scholar 

  • Johnson, B., Gangi, A. F., Handin, J. (1978): Thermal Cracking of Rocks Subjected to Slow, Uniform Temperature Changes. Proc. 19th U. S. Symp. Rock Mechanics, Univ. Nevada, Reno, 259–267.

  • Johnson, B., Gangi, A. F. (1980): Thermal Cracking of Nonuniformly Heated, Thick Walled, Hollow Cylinders of Westerly Granite. Proc. 21st U. S. Symp. Rock Mechanics, Univ. Missouri, Rolla, 197–206.

  • Kerner, E. H. (1956): Elastic and Thermoelastic Properties of Composite Media. Phys. Soc. London Proc. B69, 808–813.

    Google Scholar 

  • Kingery, W. D., Bowen, H. K., Uhlmann, D. R. (1976): Introduction to Ceramics. New York: J. Wiley & Sons, 1032 p.

    Google Scholar 

  • Kranz, R. L., Frankel, A. D., Engelder, T., Scholz, C. H. (1979): The Permeability of Whole and Jointed Barre Granite. Intern. J. Rock Mech. Min. Sci.16, 225–234.

    Google Scholar 

  • Krech, W. W., Henderson, F. A., Hjelmstad, K. E. (1974): A Standard Rock Suite for Rapid-Excavation Research. U. S. Bur. Mines, RI 7865, 29 p.

    Google Scholar 

  • Kuszyk, J. A., Bradt, R. C. (1973): Influence of Grain Size on Effects of Thermal Expansion Anisotropy in MgTi2O5. Am. Ceramic Soc. Jour.56, 420–423.

    Google Scholar 

  • Page, L., Heard, H. C. (1981): Elastic Moduli, Thermal Expansion, and Inferred Permeability of Climax Quartz Monzonite and Sudbury Gabbro to 500° C and 55 MPa. Proc. 22nd U. S. Symp. Rock Mech., Massachusetts Institute of Technology, 97–104.

  • Richter, D., Simmons, G. (1974): Thermal Expansion Behavior of Igneous Rocks. Intern. J. Rock Mech. Min. Sci.11, 403–411.

    Google Scholar 

  • Simmons, G., Cooper, H. W. (1978): Thermal Cycling Cracks in Three Igneous Rocks. Intern. J. Rock Mech. Min. Sci.15, 145–148.

    Google Scholar 

  • Skinner, B. J. (1966): Thermal Expansion,in: Handbook of Physical Constants—Revised Edition. Geol. Soc. America, Memoir97, 75–96.

    Google Scholar 

  • Sprunt, E., Brace, W. F. (1974 a): Some Permanent Structural Changes in Rocks due to Pressure and Temperature. Proc. 3rd Cong., Intern. Soc. Rock Mechanics,II-A, 524–529.

  • Sprunt, E., Brace, W. F. (1974b): Direct Observations of Microcavities in Crystalline Rocks. Intern. J. Rock Mech. Min. Sci.11, 139–150.

    Google Scholar 

  • Summers, R., Winkler, K., Byerlee, J. (1978): Permeability Changes During the Flow of Water Through Westerly Granite at Temperatures of 100° to 400° C. J. Geophys. Research83, 339–344.

    Google Scholar 

  • Sweet, J. N. (1979): Pressure Effects on Thermal Conductivity and Expansion of Geologic Materials. Sandia Laboratories, SAND78-1991, 46 p.

  • Trimmer, D., Bonner, B., Heard, H. C., Duba, A. (1980): Effect of Pressure and Stress on Water Transport in Intact and Fractured Gabbro and Granite. J. Geophys. Research85, 7059–7071.

    Google Scholar 

  • Turner, P. S. (1946): Thermal Expansion Stresses in Reinforced Plastics. Natl. Bur. Standards, J. Research37, 239.

    Google Scholar 

  • van der Molen, I., Paterson, M. S. (1981): Experimental Deformation of Partially-Melted Granite. Contrib. Mineral. Petrol. 299–318.

  • Walsh, J. (1964): The Effects of Cracks on the Compressibility of Rock. J. Geophys. Research70, 381–389.

    Google Scholar 

  • Walsh, J. B. (1973): Theoretical Bounds for Thermal Expansion, Specific Heat and Strain Energy due to Internal Stress. J. Geophys. Research78, 7637–7646.

    Google Scholar 

  • Walsh, J., Decker, E. R. (1966): Effect of Pressure and Saturating Fluid on the Thermal Conductivity of Compact Rock. J. Geophys. Research71, 3053–3061.

    Google Scholar 

  • Wong, T. F., Brace, W. F. (1979): Thermal Expansion of Rocks—Some Measurements at High Pressure. Tectonophysics57, 95–117.

    Google Scholar 

  • Zoback, M. D., Byerlee, J. D. (1975): The Effect of Microcrack Dilatancy on the Permeability of Westerly Granite. J. Geophys. Research80, 752–755.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, S.J., Handin, J. Thermal expansion and cracking of three confined water-saturated igneous rocks to 800°C. Rock Mech Rock Engng 16, 181–198 (1983). https://doi.org/10.1007/BF01033279

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01033279

Keywords

Navigation