Skip to main content
Log in

Electrochemical hydrodynamics in magnetic fields with laser interferometry: Influence of paramagnetic ions

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical reduction of Zn2+ was studied galvanostatically at current densities ranging from 0.10 to 7.0 mA cm−2 by using the system Zn/ZnSO4/Zn, and operating it at its natural pH, under the influence of imposed non-variant magnetic field strengths ranging from 0.09 to 0.50 T in the V-position, C/A-position and A/C-position. The convective contours were visibly defined in the V- and A/C positions. The extent of convection in the C/A-position was negligible in the presence of the applied magnetic field. The presence of a paramagnetic ion (Mn2+ or Cr3+) in the medium produced noticeable deviations in the concentration gradients. The mass transport coefficient for Zn2+ was evaluated in the presence of the applied magnetic field. The fluid flow velocities in the reduction of Zn2+ under the imposed magnetic field were estimated at 1–7 cm s−1. The diffusion layer relaxation was followed by the fringe shift, after the electrolysis had terminated. The relaxation mechanism appears to be a slow rotational and translational movement of the paramagnetic fluid in the C/A-position. The exact mode of interaction between the magnetohydrodynamic effect, studied previously, and the paramagnetic effect studied in this work is not yet obvious. It is proposed that the mechanism by which energy dispersion is limited and momentum conserved is by suppression of microturbulence in the non-variant magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. N. O'Brien and K. S. V. Santhanam,J. Electrochem. Soc. 129 (1982) 1266.

    Google Scholar 

  2. ,Electrochim. Acta,32 (1987) 1679.

    Google Scholar 

  3. J. L. Barton and J. O. M. Bockris,Proc. R. Soc. A 268 (1962) 485.

    Google Scholar 

  4. J. T. Kim and J. Jorne,J. Electrochem. Soc. 127 (1980) 8.

    Google Scholar 

  5. R. Fratesi, G. Roventi, M. Maja and N. Penazzi,J. Appl. Electrochem. 10 (1980) 765.

    Google Scholar 

  6. J. Horne, Y. J. Lii and K. E. Yee,J. Electrochem. Soc. 13 1399.

  7. T. Z. Fahidy,J. Appl. Electrochem. 13 (1983) 553.

    Google Scholar 

  8. R. N. O'Brien and K. S. V. Santhanam,J. Electrochem. Soc. 129 (1982) 1266.

    Google Scholar 

  9. 130 (1983) 1114.

    Google Scholar 

  10. K. S. V. Santhanam and R. N. O'Brien,J. Electroanal. Chem. 160 (1984) 377.

    Google Scholar 

  11. R. N. O'Brien and W. Michalik,Can. J. Chem. 61 (1983) 2316.

    Google Scholar 

  12. R. N. O'Brien, B. B. Kulkarni W. Michalik and K. S. V. Santhanam,Can. J. Chem. 59 (1981) 1933.

    Google Scholar 

  13. R. N. O'Brien and L. M. Mukherjie,J. Electrochem. Soc. 111 (1964) 1358.

    Google Scholar 

  14. F. R. McLarnon, R. H. Muller and C. W. Tobias,122 (1975) 59.

    Google Scholar 

  15. J. Lielmezs and H. Aleman,Thermochim. Acta 18 (1977) 315.

    Google Scholar 

  16. J. LielmezsTech. Apskats 79 (1977) 2.

    Google Scholar 

  17. A. Olivier and T. Z. Fahidy,J. Appl. Electrochem. 12 (1982) 417.

    Google Scholar 

  18. Yu. V. Pleskov and V. Yu Filinovskii, ‘The Rotating Disc Electrode’, Consultants Bureau, New York (1976) Ch. 2.

    Google Scholar 

  19. L. A. Dorfman, ‘Hydrodynamic Drag and Heat Transfer at Rotating Bodies,’ Fizmatgiz, Moscow (1960).

    Google Scholar 

  20. E. C. Cobb and D. A. Saunders,Proc. R. Soc. 236 (1956) 343.

    Google Scholar 

  21. B. B. Kulkarni and K. S. V. Santhanam,Trans. SAEST 11 (1976) 89.

    Google Scholar 

  22. D. R. Davis,Quart. J. Mech. Appl. Math. 12 (1959) 151.

    Google Scholar 

  23. V. G. Levich, ‘Physico Chemical Hydrodynamics’, Prentice-Hall, Englewood Cliffs, New Jersey (1962).

    Google Scholar 

  24. ,Zh. Fiz. Chim. 18 (1944) 335.

    Google Scholar 

  25. D. Rosner,J. Electrochem. Soc. 113 (1966) 624.

    Google Scholar 

  26. A. C. Riddiford,108 (1961) 610.

    Google Scholar 

  27. N. Ibl,108 (1961) 610.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Brien, R.N., Santhanam, K.S.V. Electrochemical hydrodynamics in magnetic fields with laser interferometry: Influence of paramagnetic ions. J Appl Electrochem 20, 427–437 (1990). https://doi.org/10.1007/BF01076051

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076051

Keywords

Navigation