Skip to main content
Log in

Solidification of tin droplets embedded in an aluminium matrix

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The solidification behaviour of tin droplets embedded in an aluminium matrix in a rapidly solidified Al-5 wt % Sn alloy has been investigated by a combination of transmission electron microscopy and differential scanning calorimetry. Detailed transmission electron microscopy shows that rapidly solidified Al-5 wt % Sn consists of about 5 μm diameter columnar aluminium grains, with a fine-scale distribution of 20–300 nm sized tin particles embedded within the aluminium grains, and 100–400 nm sized tin particles at the aluminium grain boundaries. The tin particles exhibit two different orientation relationships with the aluminium matrix and a variety of different faceted shapes: {1 1 1}Al∥{1 0 0}Sn and 〈¯2 1 1〉Al∥〈0 1 0〉Sn, with the main facet parallel to {1 1 1}Al, and {1 0 0}Sn; and {1 0 0}Al∥{1 0 0}Sn and 〈0 1 1〉Al∥〈0 1 1〉Sn, with the main facet parallel to {1 0 0}Al and {1 0 0}Sn.In situ heating in the transmission electron microscope shows that the different tin particle shapes are not affected by heat treatment in the solid state, but change into a truncated octahedral shape bounded by {1 1 1}Al and {1 0 0}Al facets when the tin particles melt. The {1 0 0}Al-liquid Sn interfacial energy is about 9% larger than the {1 1 1}Al-liquid Sn interfacial energy just above the tin particle melting point, and the {1 0 0}Al/{1 1 1}Al interfacial energy anisotropy decreases gradually as the temperature increases above the melting point. Differential scanning calorimeter experiments show that the liquid tin droplets solidify in three stages. Firstly, the larger tin droplets at the aluminium grain boundaries solidify by nucleation on catalytic trace impurities, over a temperature range of 170–140 °C. Secondly and thirdly, the smaller tin particles embedded within the aluminium grains solidify by catalytic nucleation on the {1 0 0}Al and {1 1 1}Al facets, over the two temperature ranges of 140–128 °C and 128-115°C. Catalytic nucleation of the solidification of tin takes place at special sites such as steps or dislocations on the {1 0 0}Al and {1 1 1}Al facets with contact angles of 55° and 59°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Christian, “The Theory of Transformations in Metals and Alloys” (Pergamon, Oxford 1975).

    Google Scholar 

  2. B. Vonnegut,J. Colloid Sci. 3 (1948) 563.

    Google Scholar 

  3. D. Turnbull,J. Chem. Phys. 18 (1950) 768.

    Google Scholar 

  4. J. H. Perepezko, D. H. Rasmussen, I. E. Anderson andC. R. Roper, “Solidification and Casting of Metals” (Metals Society, London, 1979) p. 169.

    Google Scholar 

  5. Y. Miyazawa andG. M. Pound,J. Crystal Growth 23 (1974) 45.

    Google Scholar 

  6. J. H. Perepezko et al., “Rapid Solidification Processing: Principles and Technology”, edited by R. Mehrabian, B. H. Kear and M. Cohen (Claitors, Baton Rouge, 1980) p. 56.

    Google Scholar 

  7. J. H. Perepezko,Mater. Sci. Engng 65 (1984) 125.

    Google Scholar 

  8. J. H. Perepezko andJ. S. Smith,J. Non-Cryst. Solids 44 (1981) 65.

    Google Scholar 

  9. J. H. Perepezko andJ. S. Paik,ibid 61/62 (1984) 113.

    Google Scholar 

  10. M. G. Chu, Y. Shiohara andM. C. Flemings,Met. Trans. 15A (1984) 1303.

    Google Scholar 

  11. D. Turnbull andR. E. Cech,J. Appl. Phys. 21 (1950) 804.

    Google Scholar 

  12. D. Turnbull,J. Metals 188 (1950) 1144.

    Google Scholar 

  13. M. J. Stowell,Phil. Mag. 22 (1970) 1.

    Google Scholar 

  14. R. E. Sundquist andL. F. Mondolfo,Trans. AIME 221 (1961) 157.

    Google Scholar 

  15. R. E. Cech andD. Turnbull,ibid. 206 (1956) 124.

    Google Scholar 

  16. A. J. Drehman andA. L. Greer,Acta Metall. 32 (1984) 323.

    Google Scholar 

  17. A. J. Drehman andD. Turnbull,Scripta Metall. 15 (1981) 543.

    Google Scholar 

  18. G. H. Abbaschian andM. C. Flemings,Met. Trans. 14A (1983) 1147.

    Google Scholar 

  19. T. Z. Kattamis andM. C. Flemings,Trans. TMS-AIME 236 (1966) 1523.

    Google Scholar 

  20. W. T. Kim, PhD thesis, Seoul National University, Seoul (1987).

    Google Scholar 

  21. J. Fehling andE. Scheil,Z. Metallkde 53 (1962) 593.

    Google Scholar 

  22. S. N. Ojha, T. R. Anantharaman andP. Ramachandrarao,J. Mater. Sci. 17 (1982) 264.

    Google Scholar 

  23. T. Z. Kattamis andM. C. Flemings,Met. Trans. 1 (1970) 1449.

    Google Scholar 

  24. K. I. Moore, D. L. Zhang andB. Cantor,Acta Metall., in press.

  25. C. C. Wang andC. S. Smith,Trans. AIME 188 (1950) 136.

    Google Scholar 

  26. R. T. Southin andG. A. Chadwick,Acta Metall. 26 (1978) 223.

    Google Scholar 

  27. P. G. Boswell andG. A. Chadwick,ibid. 28 (1980) 209.

    Google Scholar 

  28. K. I. Moore, K. Chattopadhyay andB. Cantor,Proc. Roy. Soc. A414 (1987) 499.

    Google Scholar 

  29. K. I. Moore andB. Cantor, in “Solidification and Casting of Metals II” (Metals Society, London, 1987) p. 515.

    Google Scholar 

  30. D. L. Zhang andB. Cantor,J. Mater. Sci., in press.

  31. Idem, Phil. Mag.,A62 (1990) 557.

    Google Scholar 

  32. A. J. McAlister andD. J. Kahan,Bull. Alloy Phase Diag. 4 (1983) 410.

    Google Scholar 

  33. G. Wulff,Z. Kristallogr. 53 (1901) 440.

    Google Scholar 

  34. D. Turnbull,J. Appl. Phys. 21 (1950) 1022.

    Google Scholar 

  35. B. Cantor andR. D. Doherty,Acta Metall. 27 (1979) 33.

    Google Scholar 

  36. W. T. Kim, D. L. Zhang andB. Cantor,Met. Trans. in press.

  37. L. M. Mondolfo, N. L. Parisi andG. J. Kardys,Mat. Sci. Engng 68 (1984–85) 249.

    Google Scholar 

  38. E. A. Brandes andC. J. Smithells, “Metals Reference Book”, 6th Edn (Butterworths, London, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, W.T., Cantor, B. Solidification of tin droplets embedded in an aluminium matrix. J Mater Sci 26, 2868–2878 (1991). https://doi.org/10.1007/BF01124815

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01124815

Keywords

Navigation