Skip to main content
Log in

Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Fractional calculus is used to describe the general behavior of materials with memory. An expression for the fractional derivative or the fractional integral is developed in terms of the Stieltjes convolution and the Riesz distribution. The general fractional calculus polynomial operator constitutive equation is reduced to a Stieltjes convolution. A constitutive equation which depends on a memory parameter for an isotorpic viscoelastic material is presented. The proposed creep compliance has an initial response, a primary creep region, a secondary creep region and a tertiary creep region. The corresponding relaxation modulus has a glassy region, a leathery region, a rubbery region and a liquid region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gemant, A.: Compressional waves in media with complex viscosity. Physics6, 383–365 (1935).

    Google Scholar 

  2. Gemant, A.: The conception of a complex viscosity and its application to dielectrics. Trans Faraday Soc.31, 1582–1590 (1935).

    Google Scholar 

  3. Gemant, A.: A method of analyzing experimental results obtained from elasto-viscous bodies. Physics7, 311–317 (1936).

    Google Scholar 

  4. Gemant, A.: On fractional differentials. Philosophical Maganize25, 540–549 (1938).

    Google Scholar 

  5. Gamant, A.: Frictional Phenomena. Brooklyn, NY: Chemical Publishing Co. 1950.

    Google Scholar 

  6. Scott Blair, G. M., Coppen, F. M. V.: The subjective judgment of the elastic and plastic properties of soft bodies; the differential thresholds for viscosities and compression moduli. Roy. Soc.128B, 109–125 (1939).

    Google Scholar 

  7. Scott Blair, G. W., Coppen, F. M. V.: The classification of the rheological properties of industrial materials in the light of power-law relations between stress, strain, and time. J. Sci. Instr.19, 88–93 (1942).

    Google Scholar 

  8. Scott Blair, G. W.: A survey of general and applied rheology. New York: Pitman Publishing Corporation 1944.

    Google Scholar 

  9. Scott Blair, G. W., Veinolou, B. C., Caffyn, J. E.: Limitations of the Newtonian scale in relation to non-equilibrium rheological states and a theory of quasi-properties. Proc. Roy. Soc.189A, 69–87 (1947).

    Google Scholar 

  10. Scott Blair, G. W., Reiner, M.: The rheological law underlying the Nutting equation. Appl. Sci. Res.A 2, 225–234 (1950).

    Google Scholar 

  11. Nutting, P. G.: A new general law of deformation. Journal of the Franklin Institute191, 679–685 (1921).

    Google Scholar 

  12. Nutting, P. G.: A study of elastic viscous deformation. Proc. Amer. Soc. Test. Mater.21, 1162–1171 (1921).

    Google Scholar 

  13. Nutting, P. G.: A general stress-strain-time formula. J. Franklin Inst.235, 513–524 (1943).

    Google Scholar 

  14. Nutting, P. B.: Deformation in relation to time, pressure and temperature. J. Franklin Inst.242, 449–458 (1946).

    Google Scholar 

  15. Norton, F. H.: The creep of steel at high temperature, pp. 58–62. New York: McGraw-Hill 1929.

    Google Scholar 

  16. Ross, B.: A brief history and exposition of the fundamental theory of fractional calculus. Lecture Notes in Mathematics457, pp. 1–36 Springer 1975.

    Google Scholar 

  17. Oldham, K. B., Spanier, J.: The fractional calculus, Academic Press 1974.

  18. Lacroix, S. F.: Traité du calcul différentiel et du calcul intégral, Tome Troisième, seconde edition, pp. 409–410. Paris: Mne. Ve Courcier 1819.

    Google Scholar 

  19. Koeller, R. C.: Application of fractional calculus to the theory of viscoelasticity, ASME Journal of Appl. Mechanics.51, 299–307 (1984).

    Google Scholar 

  20. Courant, R.: Differential and intergral calculus, Vol. II, p. 339. Blackie and Son Limited 1962.

  21. Whittaker, Watson: A conurse in modern analysis, 4th Ed, p. 76. Cambridge Univ. Press 1927.

  22. Gel'fand, I. M., Shilov, G. E.: Generalized functions; Volume 1, properties and operations. Academic Press 1964.

  23. Riesz, F., Sz.-Nagy, B.: Functional analysis, p. 110. Frederick Ungar Publishing Co. 1944.

  24. Bagley, R. L., Torvik, P. J.: A generalized derivative model for an elastomer damper. Shock Vibr. Bull., No. 49, Part 2, pp. 135–143, Sept. 1979.

    Google Scholar 

  25. Bagley, R. L., Torvik, P. J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. of Rheology27 (3), 201–210 (1983).

    Google Scholar 

  26. Bagley, R. L., Torvik, P. J.: Fractional calculus — A different approach to the analysis of viscoelastically damped structures. AIAA Journal21, 741–748 (1983).

    Google Scholar 

  27. Torvik, P. J., Bagley, R. L.: On the appearance of the fractional derivative in the behavior of real material. ASME J. Appl. Mech.51, 2940298 (1984).

    Google Scholar 

  28. Bagley, R. L., Torvik, P. J.: Fractional calculus in the transient analysis of viscoelastically damped structure. AIAA Journal23 (1985).

  29. Gurtin, M. E., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Ration. Mech. and Anal.11, 291–356 (1962).

    Google Scholar 

  30. Güttinger, W.: Generalized functions and dispersion relations in physics. Fortschritte der Physik14, 483–602 (1966).

    Google Scholar 

  31. Caputo, M.: Linear models of dissipation whoseQ is almost frequency independent. Ann. Geofisica19, 4, 383–393, 1966.

    Google Scholar 

  32. Caputo, M.: Linear models of dissipation whoseQ is almost frequency independent-II. Geophys. J. R. Astr. Soc.13, 529–539 (1967).

    Google Scholar 

  33. Caputo, M., Mainarrdi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys.91, 134–147 (1971).

    Google Scholar 

  34. Caputo, M.: Vibration of an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soc. Am.56 (3), 897–904 (1974).

    Google Scholar 

  35. Caputo, M.: Vibrations of an infinite plate with a frequency independentQ: J. Acoust. Soc. V.60 (3), 634–639 (1976).

    Google Scholar 

  36. Tobolsky, A. V., Catsiff, E.: Elastoviscous properties of polyisobutylene (and other amorphous polymers) from stress-relaxation studies. IX, a summary of results. Journal of Polymer Science19, 111–121 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koeller, R.C. Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics. Acta Mechanica 58, 251–264 (1986). https://doi.org/10.1007/BF01176603

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176603

Keywords

Navigation