Skip to main content
Log in

Laminarescent, relaminarizing and retransitional flows

  • Review Article
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This report examines in detail all accelerated turbulent boundary layers and subcritical pipe or channel flows undergoing relaminarization and possible retransition, with a view to evolving a broad picture in regard to the status of experiments in these flows, the trustworthiness or shortcomings of the data, the sources of difficulties peculiar to these flows, etc. With the hindsight so acquired, a discussion is provided of the directions in which future work would most usefully supplement the existing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

pipe radius or channel half-height

c f :

skin-friction coefficient

H :

shape factor,δ *

K :

acceleration parameter, ν(dU /dx)/U 2

k :

Karman constant

P :

kinematic pressure

Re:

Reynolds number,U av a/ν

R θ :

momentum thickness Reynolds number,U θ/ν

T :

temperature

U, V :

mean velocity inx andy directions respectively

U * :

friction velocity,\(\tau _{w^{1/2} }\)

u, v, w :

fluctuating velocity components in thex, y andz directions respectively

x, y, z :

streamwise, normal and spanwise Cartesian coordinates

Δ p :

\(v(dP/dx)/U_{*^3 }\)

Δ τ :

\(v(\partial \tau /\partial y)/U_{*^3 }\)

δ:

boundary layer thickness,U(δ)/U =0.995

δ* :

displacement thickness,\(\int\limits_{ - \infty }^\infty {(1 - U/U_\infty ) dy}\)

θ:

momentum thickness,\(\int\limits_{ - \infty }^\infty {(U/U_\infty ) (1 - U/U_\infty ) dy}\)

Λ:

pressure gradient parameter,(dP/dx) δ/τ w

ν:

kinematic viscosity coefficient

τ:

kinematic Reynolds shear stress,\(\overline { - uv}\)

∞:

free-stream values

w:

wall values

av:

section average values

+:

variables normalized by U* and ν

′:

rms values

References

  1. Back, L. H., Seban, R. A.: Flow and heat transfer in a turbulent boundary layer with large acceleration parameter. Proc. Heat Transfer Fluid Mech. Inst. (Libby, Olfe, Van Atta, eds.), p. 410. 1967.

  2. Back, L. H., Massier, P. F., Gier, H. L.: Convective heat transfer in a convergent-divergent nozzle. Int. J. Heat Mass Transfer7, 549 (1964).

    Google Scholar 

  3. Badri Narayanan, M. A.: An experimental study of reverse transition in two-dimensional channel flow. J. Fluid Mech.31, 609 (1968).

    Google Scholar 

  4. Badri Narayanan, M. A., Ramjee, V.: On the criteria for reverse transition in a two-dimensional boundary layer flow. J. Fluid Mech.35, 225 (1969).

    Google Scholar 

  5. Bardi Narayanan, M. A., Rajagopalan, S., Narasimha, R.: Some experimental investigations on the fine structure of turbulence. Rep. No. 74FM 15. Dept. Aero. Eng., Ind. Inst. Sci., Bangalore (1974).

    Google Scholar 

  6. Batchelor, G. K., Proundman, I.: The effect of rapid distortion of a fluid in turbulent motion. Quart. J. Mech. Appl. Math.7, 83 (1954).

    Google Scholar 

  7. Blackwelder, R. F., Kovasznay, L. S. G.: Large scale motion of a turbulent boundary layer during relaminarization. J. Fluid Mech.53, 61 (1972).

    Google Scholar 

  8. Brinich, P. F., Neumann, H. E.: Some effects of acceleration on the turbulent boundary layer. AIAA J.8, 987 (1970).

    Google Scholar 

  9. Brown, G. L.: Theory and application of heated films for skin-friction measurement. Proc. Heat Tr. Fluid Mech. Inst. (Libby, Olfe, Van Atta, eds.), p. 361. 1967.

  10. Coles, D.: The turbulent boundary layer in a compressible fluid. RAND Rep. No. R-403-PR (1962).

  11. Fiedler, H., Head, M. R.: Intermittency measurements in the turbulent boundary layer. J. Fluid Mech.25, 719 (1966).

    Google Scholar 

  12. Herring, H. J., Norbury, N. F.: Some experiments on equilibrium turbulent boundary layers in favourable pressure gradient. J. Fluid Mech.27, 541 (1967).

    Google Scholar 

  13. Jones, W. P., Launder, B. E.: Some properties of sink-flow turbulent boundary layers. J. Fluid Mech.56, 337 (1972).

    Google Scholar 

  14. Julien, H. L., Kays, W. M., Moffatt, R. J.: The turbulent boundary layer on a porous plate: Experimental study of the effects of a favourable pressure gradient. Stanford University, Thermosci. Dvn. Rep. HMT-4 (1969).

  15. Kader, B. A., Yaglom, A. M.: Similarity treatment of moving-equilibrium turbulent boundary layers in adverse pressure gradients. J. Fluid Mech.89, 305 (1978).

    Google Scholar 

  16. Kim, H. T., Kline, S. J., Reynolds, W. C.: The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech.40, 133 (1971).

    Google Scholar 

  17. Kline, S. J., Reynolds, W. C., Schraub, F. A., Runstadler, P. W.: The structure of turbulent boundary layers. J. Fluid Mech.30, 741 (1967).

    Google Scholar 

  18. Laufer, J.: Decay of non-isotropic turbulent field. In: Miszellen der angewandten Mechanik, Festschrift Walter Tollmien. Berlin: Akademie-Verlag 1962.

    Google Scholar 

  19. Launder, B. E.: Laminarization of the turbulent boundary layer by acceleration. Rep. No. 77. Gas Turbine Lab., Massachusetts Institute of Technology, Cambridge (1964).

    Google Scholar 

  20. Launder, B. E., Jones, W. P.: Sink flow turbulent boundary layers. J. Fluid Mech.38, 817 (1969).

    Google Scholar 

  21. Launder, B. E., Stinchcombe, H. S.: Non-normal similar turbulent boundary layers. Imp. Coll. Note TWF/TN 21. Dept. Mech. Eng. (1967).

  22. Liepmann, H. W., Skinner, G. T.: Shearing-stress measurements by use of a heated element. NACA TN 3268 (1954).

  23. Loyd, R. J., Moffat, R. J., Kays, W. M.: The turbulent boundary layer on a porous plate: An experimental study of the fluid dynamics with strong favourable pressure gradients and blowing. Stanford University, Thermosci. Dvn. Rep. HMT-13 (1970).

  24. Moretti, P. H., Kays, W. M.: Heat transfer in turbulent boundary layer with varying free stream velocity and varying surface temperature- an experimental study. Int. J. Heat Mass Transfer8, 1187 (1965).

    Google Scholar 

  25. Narasimha, R., Sreenivasan, K. R.: Relaminarization in highly accelerated turbulent boundary layers. J. Fluid. Mech.61, 417 (1973).

    Google Scholar 

  26. Narasimha, R., Sreenivasan, K. R.: Relaminarization of fluid flows. Adv. Appl. Mech.19, 221 (1979).

    Google Scholar 

  27. Narasimha, R., Viswanath, P. R.: Reverse transition at an expansion corner in supersonic flows. AIAA J.13, 693 (1975).

    Google Scholar 

  28. Nash-Webber, J. L.: Wall shear-stress and laminarization in accelerated turbulent compressible boundary layers. Rep. No. 94, Gas Turbine Lab. Massachusetts Institute of Technology, Cambridge (1968).

    Google Scholar 

  29. Okamoto, T., Misu, I.: Reverse transition of turbulent boundary layer on plane wall of two-dimensional contraction. Trans. Jpn. Soc. Aerosp. Sci.20, 1 (1977).

    Google Scholar 

  30. Patel, V. C.: Calibration of the preston tube and limitations on its use in pressure gradients. J. Fluid Mech.23, 185 (1965).

    Google Scholar 

  31. Patel, V. C., Head, M. R.: Reversion of turbulent to laminar flow. J. Fluid Mech.34, 371 (1968).

    Google Scholar 

  32. Patel, V. C., Head, M. R.: Some observations on skin-friction and velocity profiles in fully developed pipe and channel flows. J. Fluid Mech.38, 181 (1969).

    Google Scholar 

  33. Preston, J. H.: The minimum Reynolds number for a turbulent boundary layer and the selection of a transition device. J. Fluid Mech.3, 373 (1958).

    Google Scholar 

  34. Ramjee, V.: Reverse transition in a two-dimensional boundary layer flow. Ph. D. Thesis, Dept. Aero. Eng., Ind. Inst. Sci., Bangalore (1968).

    Google Scholar 

  35. Rosenhead, L. (ed.): Laminar boundary layers. London-New York: Oxford University Press 1963.

    Google Scholar 

  36. Rubesin, M. W., Okuno, A. F., Mateer, G. G., Brosh, A.: A hot-wire surface gauge for skin-friction and separation measurements. NASA TMX62, 465 (1975).

    Google Scholar 

  37. Schraub, F. A., Kline, S. J.: A study of the structure of the turbulent boundary layer with and without longitudinal pressure gradients. Rep. No. MD-12. Thermosci. Div., Stanfod University, Stanford, California (1965).

    Google Scholar 

  38. Sergienko, A. A., Gretsov, K. V.: Transition from turbulent to laminar boundary layer. Dokl. Akad. Nauk. SSSR 125 (RAE Translation No. 827) (1959).

  39. Sibulkin, M.: Transition from turbulent to laminar flow. Phys. Fluids5, 280 (1962).

    Google Scholar 

  40. Simpson, R. L., Shackleton, C. R.: Laminarescent turbulent boundary layers: Experiments on nozzle flows. Proj. SQUID Tech. Rep. No. SMU-2-PU (1977).

  41. Simpson, R. L., Wallace, D. B.: Laminarescent turbulent boundary layers: Experiments on sink flows. Proj. SQUID Tech. Rep. No. SMU-1-PU (1975).

  42. Spence, D. A., Brown, G. L.: Heat transfer to a quadratic shear profile. J. Fluid Mech.33, 753 (1968).

    Google Scholar 

  43. Sreenivasan, K. R.: Notes on the experimental data on reverting boundary layers. Rep. No. 72 FM2. Dept. Aero. Eng., Ind. Inst. Sci. Bangalore (1972).

    Google Scholar 

  44. Sreenivasan, K. R., Narasimha, R.: Rapid distortion of shear flows. Aero Soc. India, Silver Jubille Tech. Conf., Paper 2/3 (1974).

  45. Sreenivasan, K. R., Narasimha, R.: Rapid distortion of axisymmetric turbulence. J. Fluid Mech.84, 497 (1978).

    Google Scholar 

  46. Sternberg, J.: The transition from a turbulent to a laminar boundary layer. Rep. No. 906. Ballistic Res. Lab., Aberdeen (1954).

    Google Scholar 

  47. Thwaites, B.: Approximate calculation of the laminar boundary layers. Aero. Quart.1, 245 (1949).

    Google Scholar 

  48. Townsend, A. A.: The structure of turbulent shear flow. London-New York: Cambridge University Press 1956.

    Google Scholar 

  49. Van Driest, E. R.: On turbulent flow near a wall. J. Aero. Sci.23, 1007 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

16 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreenivasan, K.R. Laminarescent, relaminarizing and retransitional flows. Acta Mechanica 44, 1–48 (1982). https://doi.org/10.1007/BF01190916

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01190916

Keywords

Navigation