Skip to main content
Log in

Reactive compatibilization of ABS/Nylon 6,6 blends: Effects of reactive group concentration and blending sequence

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Styrene-acrylonitrile-glycidyl methacrylate (SAG) copolymers with various glycidyl methacrylate (GMA) contents have been used to compatibilize the incompatible blends of acrylonitrile-butadiene-styrene (ABS) and nylon 6,6 (N66) by varying the blending sequences. When the epoxy group of SAG copolymer makes contact and reacts with the amine endgroup of N66, the resultant grafted products, SAG-g-N66, tend to reside at interface and act as compatibilizers of the blends. For a SAG copolymer with lower GMA content (SG2), a better compatibilized blend is achieved by sequential blending of the SAG2 with N66 then with ABS. When a higher GMA content SAG (SAG 10) is employed, on the contrary, a better compatibilized blend is obtained by preblending SAG10 with ABS then with N66. A grafted SAG-g-N66 molecule is considered as an effective compatibilizer when it anchors along the interface with the ungrafted SAG, or the SA segments, penetrating into the ABS phase while the branched N66 chains protruding into the N66 phase. The conventional one-step three-component blending usually results in less compatibilized blend than the properly selected sequential blending. The trend of mechanical properties observed closely match the compatibility of the blend in terms of domain size. However, the overall improvement of the resultant mechanical properties of the compatibilized blend over the uncompatibilized one is not substantial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Paul and S. Newman Eds.,Polymer Blends, Academic Press, New York (1978).

    Google Scholar 

  2. D. R. Paul, J. W. Barlow, and H. Keskkula,Encyclopedia of Polymer Science and Engineering, Vol. 12, 2nd Ed., J.I. Kroschwitz Ed., John Wiley & Sons Inc., New York (1988).

    Google Scholar 

  3. L. A. Utracki,Polymer Alloys and Blends, Hanser Publishers, New York (1990).

    Google Scholar 

  4. M. Xanthos,Polym. Eng. Sci.,28, 1392 (1988).

    Google Scholar 

  5. M. Xanthos and S. S. Dagli,Polym. Eng. Sci.,31, 929 (1991).

    Google Scholar 

  6. N. C. Liu and W. E. Baker,Adv. Polym.. Technol.,11, 249 (1993).

    Google Scholar 

  7. Ye. V. Lebedev, M. Ilavsky, K. Dusek, Yu. S. Lipatov, and Z. Pelzbauer,J. Appl. Polym. Sci.,25, 2493 (1980).

    Google Scholar 

  8. D. V. Howe and P. D. Kelley, ANTEC'86, p. 324.

  9. R. E. Lavengood and F. M. Silver, ANTEC'87, p. 1369.

  10. D. V. Howe and M. D. Wolkowicz,Polym. Eng. Sci.,27, 1582 (1987).

    Google Scholar 

  11. J. C. Angola, Y. Fijita, T. Sakai, and T. Inoue,J. Polym. Sci., Polym. Phys. Edn.,26, 807 (1988).

    Google Scholar 

  12. S. J. Park, B. K. Kim, and H. N. Jeong,Eur. Polym. J.,26, 131 (1990).

    Google Scholar 

  13. V. J. Triacca, S. Ziaee, J. W. Barlow, H. Keskkula, and D. R. Paul,Polymer,32, 1401 (1991).

    Google Scholar 

  14. B. K. Kim and S. J. Park,J. Appl. Polym. Sci.,43, 357 (1991).

    Google Scholar 

  15. D. M. Otterson, B. H. Kim, and R. E. Lavengood,J. Mater. Sci.,26, 1478 (199)

    Google Scholar 

  16. C. Carrot, J. Guillet, and J. F. May,Plast. Rubb. Proc. Appl.,16, 61 (1991).

    Google Scholar 

  17. C. Carrot, J. Guillet, and J. F. May,Polym. Networks Blends,2, 1 (1992).

    Google Scholar 

  18. Y. Aoki and M. Watanabe,Polym. Eng. Sci.,32, 878 (1992).

    Google Scholar 

  19. A. Misra, G. Sawhney, and A. Kumar,J. Appl. Polym. Sci.,50, 1179 (1993).

    Google Scholar 

  20. J. Y. J. Chung and R. P. Carter, U. S. Pat. 4,554,315 (1985).

  21. S. Suzuki and T. Yamamoto,Plastics. Jpn.,41, 116 (1990).

    Google Scholar 

  22. P. C. Lee, W. F. Kuo, and F. C. Chang,Polymer, to appear.

  23. S. H. Chen and F. C. Chang,J. Appl. Polym. Sci. 51, 955 (1994).

    Google Scholar 

  24. B. S. Chang and F. C. Chang, Proceedings of the 15th ROC Polym. Symp., Taiwan, p.545 (1992).

  25. M. K. Akkapeddi, B. VanBuskirk, and C. D. Mason,ACS Polym. Preprints,34(2), 848 (1993).

    Google Scholar 

  26. H. Sakano, H. A. Ito, N. M. Yano, and S. Y. Honda, U. S. Pat. 4,444,950 (1984).

  27. M. Mashita, T. Fujii, and T. Oomae, U. S. Pat. 5,004,782 (1991).

  28. M. Mashita, T. Fujii, and T. Oomae, U. S. Pat. 4,780,505 (1988).

  29. F. C. Chang and Y. C. Hwu,Polym. Eng. Sci.,31, 1509 (1991).

    Google Scholar 

  30. C. T. Maa and F. C. Chang,J. Appl. Polym. Sci.,49, 913 (1993).

    Google Scholar 

  31. D. Y. Chang and F. C. Chang,Polymer Networks & Blends, to appear.

  32. W. B. Liu, W. F. Kuo, C. R. Chiang, and F. C. Chang,Eur. Polym. J., to appear.

  33. D. Y. Chang and F. C. Chang,J. Appl. Polym. Sci., to appear.

  34. H. R. Brown,J. Mater. Sci.,8, 941 (1977).

    Google Scholar 

  35. G. P. Marshall, J. G. Williams, and C. E. Turner,J. Mater. Sci.,8, 949 (1977).

    Google Scholar 

  36. F. C. Chang, J. S. Wu, and L. H. Chu,J. Appl. Polym. Sci.,44, 1615 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, HH., Wu, JS. & Chang, FC. Reactive compatibilization of ABS/Nylon 6,6 blends: Effects of reactive group concentration and blending sequence. J Polym Res 1, 235–245 (1994). https://doi.org/10.1007/BF01374548

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01374548

Keywords

Navigation