Skip to main content
Log in

Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We consider the question of whether multistep methods inherit in some sense quadratic first integrals possessed by the differential system being integrated. We also investigate whether, in the integration of Hamiltonian systems, multistep methods conserve the symplectic structure of the phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I. (1989): Mathematical methods of classical mechanics, 2nd ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Baiocchi, C., Crouzeix, M. (1989): On the equivalence of A-stability and G-stability. Appl. Numer. Math.5, 19–22

    Google Scholar 

  3. Channell, P.J., Scovel, C. (1990): Symplectic integration of Hamiltonian systems. Nonlinearity3 231–259

    Google Scholar 

  4. Dahlquist, G. (1976): Error analysis for a class of methods for stiff nonlinear initial value problems. In: G.A. Watson, ed., Springer, Berlin Heidelberg New York, pp. 60–72

    Google Scholar 

  5. Dahlquist, G. (1978): G-stability is equivalent to A-stability. BIT18, 384–401

    Google Scholar 

  6. Feng, K. (1986): Difference schemes for Hamiltonian formalism and symplectic geometry. J. Comput. Math.4, 279–289

    Google Scholar 

  7. Frutos, J. de, Ortega, T., Sanz-Serna, J.M. (1990): A Hamiltonian explicit algorithm with spectral accuracy for the ‘good’ Boussinesq system. Comput. Methods Appl. Mech. Engrg.80, 417–423

    Google Scholar 

  8. Lasagni, F.M. (1988): Canonical Runge-Kutta methods. Z. Angew. Math. Phys.39, 952–953

    Google Scholar 

  9. Ruth, R. (1984): A canonical integration technique. IEEE Trans. Nucl. Sci.30, 269–271

    Google Scholar 

  10. Sanz-Serna, J.M. (1988): Runge-Kutta schemes for Hamiltonian systems. BIT28, 877–883

    Google Scholar 

  11. Sanz-Serna, J.M. (1991): The numerical integration of Hamiltonian systems. Proceedings of the Conference on Computational Differential Equations, Imperial College London, 3rd–7th July 1989 (to appear)

  12. Sanz-Serna, J.M. (1991): Two topics in nonlinear stability. In: W. Light, ed., Advances in Numerical Analysis, Vol. 1. Clarendon Press, Oxford, pp. 147–174

    Google Scholar 

  13. Sanz-Serna, J.M., Abia, L. (1991): Order conditions for canonical Runge-Kutta schemes. SIAM J. Numer. Anal.28, 1081–1096

    Google Scholar 

  14. Sanz-Serna, J.M., Vadillo, F. (1986): Nonlinear instability the dynamic approach. In: D.F. Griffiths, G.A. Watson, eds., Numerical Analysis, Longman, London, pp. 187–199

    Google Scholar 

  15. Sanz-Serna, J.M., Vadillo, F. (1987): Studies in nonlinear instability III: augmented hamiltonian systems. SIAM J. Appl. Math.47, 92–108

    Google Scholar 

  16. Sanz-Serna, J.M., Verwer, J.G. (1986): Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA. J. Numer. Anal.6 25–42

    Google Scholar 

  17. Suris, Y.B. (1987) Canonical transformations generated by methods of Runge-Kutta type for the numerical integration of the systemx″=−∂U/∂x. Zh. Vychisl. Mat. i Mat. Fiz.29, 202–211 [in Russian]

    Google Scholar 

  18. Dahlquist, G. (1983): On one-leg multistep methods. SIAM J. Numer Anal.20, 1130–1138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eirola, T., Sanz-Serna, J.M. Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods. Numer. Math. 61, 281–290 (1992). https://doi.org/10.1007/BF01385510

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385510

Mathematics Subject Classification (1991)

Navigation