Skip to main content
Log in

Rheological properties of filled gels. Influence of filler matrix interaction

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The dynamic moduli of gels filled with particles have been studied as a function of the volume fraction of dispersed particlesϑ f (0–0.4) and of the way in which they interact with the gel matrix. Two gels of different nature were studied, viz. polyvinyl alcohol (PVA) — Congo red gels (a so-called rubber gel) and casein gels made by acidification of skimmed milk. Emulsion droplets stabilized by different macromolecules have been used as dispersed particles. If there was no interaction between the macromolecules adsorbed on the particles and the gel matrix, both the filled PVA and the filled casein gels showed a small decrease in the elastic moduli withϑ f , approaching the behaviour theoretically predicted for foams. In the case of interaction, the results for filled PVA gels roughly fitted the theoretical predictions, if the deformability of the emulsion droplets and the formation of an intermediate layer between the dispersed particles and the gel matrix was taken into account. The increase in the elastic moduli of the acid milk gels withϑ f was much greater than expected and was probably due to aggregation of the dispersed particles during gelation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Vliet T, Dentener-Kikkert A (1982) Neth Milk Dairy J 36:261

    Google Scholar 

  2. Ring S, Stainsby G (1982) In: Philips GO, Wedlock DJ, Williams PA (eds) Int Conf on Gum and Stabilizers for the Food Industry. Pergamon Press, Oxford, p 323

    Google Scholar 

  3. Richardson RK, Robinson R, Ross-Murphy SB, Todd S (1981) Polym Bull 4:541

    Google Scholar 

  4. Lipatov YS (1977) Adv Polym Sci 22:1

    Google Scholar 

  5. Dickie RA (1978) In: Paul DR, Newman S (eds) Polymer Blends. Academic Press, New York, Vol 1:353

    Google Scholar 

  6. Chow TS (1980) J Mater Sci 15:1873

    Google Scholar 

  7. Maurer FHJ (1983) Ph D thesis, Duisburg University, Duisburg, FRG

    Google Scholar 

  8. Maurer FHJ (1986) In: Sedláček B (ed) Polymer Composites. Walter de Gruyter, Berlin, p 399

    Google Scholar 

  9. Ross-Murphy SB, Todd S (1983) Polymer 24:481

    Google Scholar 

  10. Luyten H (1988) Ph D Thesis, Wageningen Agricultural University, the Netherlands

    Google Scholar 

  11. Beltman H, Lyklema J (1974) Faraday Disc Chem Soc 57:92

    Google Scholar 

  12. Glaser J, Carraod PA, Dunkley WL (1980) J Dairy Sci 63:37

    Google Scholar 

  13. Harwalker VR, Kalab J (1980) J Texture Studies 11:35

    Google Scholar 

  14. Heertjes I, Visser J, Smits P (1985) Food Microstructure 4:267

    Google Scholar 

  15. Roefs SPFM (1986) Ph D Thesis, Wageningen Agricultural University, the Netherlands

    Google Scholar 

  16. van Vliet T, Walstra P (1985) Neth Milk Dairy J 39:115

    Google Scholar 

  17. van der Poel C (1958) Rheol Acta 1:198

    Google Scholar 

  18. Schwarzl FR, Eikhoff J vd (1971) Report no CL 71/55 TNO Delft, the Netherlands

  19. Smith JC (1974) J Res Nat Bur of Stand 78A:355

    Google Scholar 

  20. Lankveld JMG, Lyklema J (1972) J Colloid Interface Sci 41:475

    Google Scholar 

  21. van Vliet T, Lyklema J (1978) J Colloid Interface Sci 63:97

    Google Scholar 

  22. Ferry JD (1970) Viscoelastic Properties of Polymers 2nd Ed. John Wiley & Sons, New York London

    Google Scholar 

  23. Booij HC, Thoone GPJM (1982) Rheol Acta 21:15

    Google Scholar 

  24. Schwarzl FR, Bree HW, Nederveen CJ, Schwippert GA, Struik LCE, van der Wal CW (1966) Rheol Acta 5:270

    Google Scholar 

  25. Walstra P, Jenness R (1984) Dairy Chemistry and Physics. John Wiley & Sons, New York, p 213

    Google Scholar 

  26. Lankveld JMG, Lyklema J (1972) J Colloid Interface Sci 41:454

    Google Scholar 

  27. Taylor GI (1934) Proc R Soc Lond A146:501

    Google Scholar 

  28. Rumscheidt FD, Mason J (1961) J Colloid Interface Sci 16:238

    Google Scholar 

  29. Lodge AS (1964) Elastic Liquids, An Introductory Vector Treatment of Finite Strain Polymer Rheology. Academic Press, London

    Google Scholar 

  30. van Vliet T (1977) Ph D Thesis, Wageningen Agricultural University, the Netherlands

    Google Scholar 

  31. Smith JC (1975) J Res Nat Bur of Stand 79A:419

    Google Scholar 

  32. Lyklema J, van Vliet T (1978) Faraday Disc Chem Soc 65:25

    Google Scholar 

  33. Bird RB, Stewart WE, Lightfoot EN (1960) Transport Phenomena. John Wiley & Sons, New York, p 299

    Google Scholar 

  34. Ives KJ (1978) In: Ives KJ (ed) The Scientific Basis of Flocculation. Sijthoff & Noordhoff, Alphen ad Rijn, the Netherlands, p 37

    Google Scholar 

  35. Spielman LA (1970) J Colloid Interface Sci 33:562

    Google Scholar 

  36. Honig EP, Roebersen GJ, Wiersema PH (1971) J Colloid Interface Sci 36:97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Vliet, T. Rheological properties of filled gels. Influence of filler matrix interaction. Colloid & Polymer Sci 266, 518–524 (1988). https://doi.org/10.1007/BF01420762

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01420762

Key words

Navigation