Skip to main content
Log in

Changes in carbonyl index and average molecular weight on embrittlement of enhanced-photodegradable polyethylenes

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

Weathering behavior of two types of enhanced-photodegradable polyethylenes was studied using FTIR spectroscopy, tensile property changes, and gel-permeation chromatography to monitor structural changes accompanying photodegradation. Changes in elongation at break and carbonyl index during degradation showed a strong correlation with the average molecular weight of the polymers. At the point of embrittlement, the highest extent of degradation measured using tensile properties, the number-average molecular weights for both polymers were in the 104 g/mol range. Facile biodegradation is not expected of polyethylenes of this degree of polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Guillet, inPolymers and Ecological Problems (Plenum Press, New York, 1973).

    Google Scholar 

  2. J. E. Guillet, J. Dhanaraj, F. J. Colemba, and G. H. Hartley,Adv. Chem. Ser. 85 272 (1968).

    Google Scholar 

  3. J. E. Guillet, U.S. Patent 3,853,814 (1974).

  4. G. Scott, British Patent 1,356,107 (1971).

  5. D. Gilead and G. Scott, British Patent 1,586,344, U.S. Patent 4,519,161 (1978).

  6. A. L. Andrady, J. E. Pegram, and S. Nakatsuka,J. Environ. Polym. Degrad. 1 31 (1993).

    Google Scholar 

  7. A. C. Albertsson and Z. G. Banhidi,J. Appl. Polym. Sci. 25 1655 (1980).

    Google Scholar 

  8. P. H. Jones, D. Prasad, and M. Heskins,Environ. Sci. Technol. 8 919–923 (1974).

    Google Scholar 

  9. A. C. Albertsson and B. Ranby,Biodegradation of Synthetic Polymers: The C-14 Method Applied to Polyethylenes (Appl. Sci., Barkling, England, Dept. Polym. Technol., R. Inst. Technol., Stockholm, Sweden, 1976), pp. 743–751.

    Google Scholar 

  10. G. Scott,J. Polym. Sci. Symp. 57 357 (1976).

    Google Scholar 

  11. J. D. Morison and A. J. G. Nicholson,J. Chem. Phys. 20 1021 (1952).

    Google Scholar 

  12. D. J. Carlsson, A. Garton, and D. M. Wiles, inDevelopments in Polymer Stabilization—1 (Applied Science, London, 1979), p. 219.

    Google Scholar 

  13. D. J. Carlsson and D. M. Wiles,Macromolecules 2 587 (1969).

    Google Scholar 

  14. F. J. Golemba and J. E. Guillett,Macromolecules 5 63 (1972).

    Google Scholar 

  15. J. E. Guillet and S. K. I. Li,J. Polym. Sci. Polym. Chem. Ed. 18 2221 (1980).

    Google Scholar 

  16. A. K. Breck, C. L. Taylor, K. E. Russell, and J. K. S. Wan,J. Polym. Sci. 12 1505 (1974).

    Google Scholar 

  17. F. Gugumus,Polym. Dev. Stab. 8 239 (1987).

    Google Scholar 

  18. G. R. McMillan, J. G. Clavert, and J. N. Pitts,J. Am. Chem. Soc. 86 3602 (1964).

    Google Scholar 

  19. D. J. Carlsson and D. M. Wiles,Macromolecules 4 179 (1971).

    Google Scholar 

  20. G. Scott,J. Oil Col. Chem. Assoc. 56 521 (1973).

    Google Scholar 

  21. M. U. Amin and G. Scott,Eur. Polym. J. 9 219 (1973).

    Google Scholar 

  22. G. Scott,Polym. Age. 6 54–56 (1975).

    Google Scholar 

  23. M. U. Amin, G. Scott, and L. M. K. Tillekeratne,Eur. Polym. J. 11 85 (1975).

    Google Scholar 

  24. G. Scott,Chem. Soc. Div. Org. Coat. Plast. Chem. Prepr. 35 163 (1975).

    Google Scholar 

  25. S. H. Hamid and A. G. Maadah,Arab. J. Sci. 13(4), 503 (1988).

    Google Scholar 

  26. G. Akay, T. Tincer, and E. Aydin,Eur. Polym. J. 16(7), 597 (1980).

    Google Scholar 

  27. K. Tsuji and H. Nagata,Rep. Prog. Polym. Phys. Jap. 18 517 (1975).

    Google Scholar 

  28. F. Gugumus,Die Angew. Makromol. Chem. 182 85 (1990).

    Google Scholar 

  29. M. U. Amin and G. Scott,Eur. Polym. J. 10 1019 (1974).

    Google Scholar 

  30. J. F. Heacock, F. B. Mallory, and F. Gay,J. Polym. Sci. 6 2921 (1968).

    Google Scholar 

  31. C. H. Chew, L. M. Gan, and G. Scott,Eur. Polym. J. 13 361 (1977).

    Google Scholar 

  32. G. H. Hartley and J. E. Guillett,Macromolecules 1(2), 165 (1968).

    Google Scholar 

  33. M. Johannensen,J. Appl. Polym. Symp. 35 415 (1979).

    Google Scholar 

  34. R. Narayan, inBiodegradable Polymers and Plastics (Royal Society of Chemistry, Cambridge, England, 1992), p. 176.

    Google Scholar 

  35. J. E. Potts, R. A. Clendinning, and W. B. Ackart,An Investigation of the Biodegradability of Packaging Plastics (Union Carbide Corporation, Bound Brook, NJ, 1972).

    Google Scholar 

  36. V. N. Kestelman, V. L. Yarovenko, and E. J. Meinikova,Int. Biodeterior. Bull. 8 15 (1972).

    Google Scholar 

  37. F. C. Schwab, inDegradable Materials; Perspectives, issues and Opportunities (CRC Press, Boca Raton, FL, 1990), p. 559.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrady, A.L., Pegram, J.E. & Tropsha, Y. Changes in carbonyl index and average molecular weight on embrittlement of enhanced-photodegradable polyethylenes. J Environ Polym Degr 1, 171–179 (1993). https://doi.org/10.1007/BF01458025

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01458025

Key words

Navigation