Skip to main content
Log in

Rheology of concentrated disperse systems and minimum energy dissipation principle

I. Viscosity-concentration relationship

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

For concentrated disperse systems, exhibiting newtonian behaviour, a new viscosity-concentration relationship is deduced from the optimization of viscous energy dissipation. Comparison with several theoretical and experimental investigations gives satisfactory agreement up to packing concentrations.

Zusammenfassung

Eine neue Viskositäts-Konzentrations-Beziehung für konzentrierte disperse Systeme mit newtonschem Verhalten wird durch Optimierung der viskosen Energie-Dissipation abgeleitet. Der Vergleich mit verschiedenen theoretischen und experimentellen Untersuchungen ergibt eine befriedigende Übereinstimmung bis zu den höchsten Packungsdichten.

Résumé

Une nouvelle relation viscosité-concentration pour les systèmes dispersés concentrés, à comportement newtonien, a été déduite de l'optimisation de l'énergie dissipée par viscosité. Cette relation est comparée à différents résultats théoriques et expérimentaux, et donne un accord satisfaisant jusqu'à la concentration d'entassement maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayliss, L., Rheology of blood and lymph, in Deformation and Flow in Biological Systems,Frey-Wyssling (ed.), p. 354 (Amsterdam 1952).

  2. Bird, R. B. Physics of Fluids3, 539–541 (1960).

    Google Scholar 

  3. Brinkman, H. C. J. Chem. Phys.20, 571 (1952).

    Google Scholar 

  4. Brooks, D. E., G. V. F. Seamn, Theor. Clin. Hemorheol. (H. H. Hartet andA. L. Copley ed.), p. 127 (Berlin 1971).

  5. Deakin, M. A. B. Bull. Math. Biophys.29, 565 (1967).

    Google Scholar 

  6. De Bruijn, H. Rec. Trav. Chim.61, 863 (1942).

    Google Scholar 

  7. Clerc et al., C. R. Acad. Sci.281 B, 227 (1975).

    Google Scholar 

  8. Dintenfass, L., Blood Microrheology (London 1971).

  9. Eilers, H. Kolloid. Z.97, 313 (1941).

    Google Scholar 

  10. Fahraeus, R., T. Lindquist Am. J. Physiol.96, 562 (1931).

    Google Scholar 

  11. Ford, T. F. J. Phys. Chem.64, 1168 (1960).

    Google Scholar 

  12. Goldsmith, H. L., Proceed. XIIIe Int. Cong. Theor. and Appl. Mech. Moscou (E. Becker andG. K. Mikhailov ed.) p. 85 (Moscow 1972).

  13. Goldsmith, H. L., S. G. Mason, In Rheology: Theory and Applications, p. 85 (New York 1967).

  14. Huggins, M. L. J. Phys. Chem.64, 2716 (1942).

    Google Scholar 

  15. Karnis, A., H. L. Goldsmith, S. G. Mason Can. J. Chem. Eng.44, 181 (1966).

    Google Scholar 

  16. Keller, J. B., L. A. Rubenfeld, J. E. Molyneux J. Fluid. Mech.30, 97 (1967).

    Google Scholar 

  17. Kirkpatrick, S. Rev. Mod. Phys.45, 574 (1973).

    Google Scholar 

  18. Korteweg, D. J. Phil. Mag. (5)16, 112 (1883).

    Google Scholar 

  19. Krieger, I. M., In: Surface and Coatings Related to Paper and Wood,R. Marchessault andC. Skaar (ed.) (1967) andT. J. Dougherty, Ph. D. Thesis, Case Inst. Techn. (1959).

  20. Lee, D. I. Trans. Soc. Rheology13, 273 (1969).

    Google Scholar 

  21. Leitmann, G., Variational problems with bounded control variables, in: Optimization techniques, with applications to aerospace systems,G. Leitmann (ed.), p. 171 (New York 1967).

  22. Lewis, T. B., L. E. Nielsen Trans. Soc. Rheology12, 421 (1968).

    Google Scholar 

  23. Lighthill, M. J., In: Circulatory and Respiratory Mass Transport, p. 85 — Ciba Found. Symp. (GEWWolastenholme andJ. Knight (ed.) (London 1969).

  24. Maron, S. H., A. E. Levy-Pascal J. Colloid Sci.10, 494 (1955).

    Google Scholar 

  25. Maron, S. H., Fok J. Colloid Sci.10, 482 (1955).

    Google Scholar 

  26. Maude, A. D., R. L. Whitmore J. Appl. Physiol.12, 105 (1958).

    Google Scholar 

  27. Meiselman, H. J., H. L. Goldsmith, Blood Rheology, Blood Flow and Thrombosis, in: Thrombosis: Mechanisms and Control (III Conf. Int. Soc. on Thromb. and Haemostasis, August 21–27 (1972) —Brinkhous (ed.), p. 273 (Stuttgart-New York 1972).

  28. Mooney, M. J. Colloid Sci.6, 162 (1951).

    Google Scholar 

  29. Oliver, D. R., S. G. Ward Nature (Lond.)171, 396 (1953).

    Google Scholar 

  30. Ostwald, W. Kolloid. Z.36, 99 (1925).

    Google Scholar 

  31. Ostwald, W., R. Auerbach Kolloid Z.38, 261 (1926).

    Google Scholar 

  32. Peterson, J. M., M. Fixman J. Chem. Phys.39, 2516 (1963).

    Google Scholar 

  33. Prigogine, I. Bull. Acad. Roy. Belg.31, 600 (1945).

    Google Scholar 

  34. Quemada, D. C. R. Acad. Sci., Paris280 B, 793 (1975).

    Google Scholar 

  35. Quemada, D. C. R. Acad. Sci., Paris181 B, 69 and281 D, 747 (1975).

    Google Scholar 

  36. Riseman, J., R. Ullman J. Chem. Phys.19, 578 (1951).

    Google Scholar 

  37. Robinson, J. V. J. Phys. Chem.53, 1042 (1949).

    Google Scholar 

  38. Roscoe, R. Brit. J. Appl. Phys.3, 267 (1952).

    Google Scholar 

  39. Segré, G., A. Silberberg J. Fluid. Mech.14, 136 (1962).

    Google Scholar 

  40. Simha, R. J. Res. NBS42, 409 (1949).

    Google Scholar 

  41. Taylor, G. I. Proc. Roy. Soc.A 138, 41 (1932).

    Google Scholar 

  42. Tesfagaber, A., M. M. Lih Bull. Math. Biology35, 577 (1973).

    Google Scholar 

  43. Thomas, D. G. J. Colloid Sci.20, 267–277 (1965).

    Google Scholar 

  44. Thomas, H. W. Biorheology1, 41 (1962).

    Google Scholar 

  45. Usami, S., S. Chien Biorheology10, 425 (1973).

    Google Scholar 

  46. Vand, V. J. Phys. et Colloid Chem.52, 277, 300, 314 (1948).

    Google Scholar 

  47. Watanabe, T., S. Oka, M. Yamamoto, 1, 193 (1963).

  48. Williams, P. S. J. Appl. Chem.3, 120 (1953).

    Google Scholar 

  49. Delgove, J. J., Thèse 3e Cycle, Paris (1974) (unpublished).

  50. Bugliarello, G., ASME Sympos. Biomedical Fluid Mechanics p. 192 (Denver 1966).

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 figures and 2 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quemada, D. Rheology of concentrated disperse systems and minimum energy dissipation principle. Rheol Acta 16, 82–94 (1977). https://doi.org/10.1007/BF01516932

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01516932

Keywords

Navigation