Skip to main content
Log in

Design and recovery of 2-D and 3-D shapes using rational Gaussian curves and surfaces

  • Published:
International Journal of Computer 11263on Aims and scope Submit manuscript

Abstract

A new representation for parametric curves and surfaces is introduced here. It is in rational form and uses rational Gaussian bases. This representation allows design of 2-D and 3-D shapes, and makes recovery of shapes from noisy image data possible. The standard deviations of Gaussians in a curve or surface control the smoothness of a recovered shape. The control points of a surface in this representation are not required to form a regular grid and a scattered set of control points is sufficient to reconstruct a surface. Examples of shape design, shape recovery, and image segmentation using the proposed representation are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agin, G.J., and Binford, T.O., 1976. Computer description of curved objects,IEEE Trans. Comput. 25(4):439–449.

    Article  MATH  Google Scholar 

  • Bajcsy, R., Lieberson, R., and Reivich, M., 1983. A computerized system for the elastic matching of deformed radiographic images to idealized atlas images,J. Comput. Assist. Tomog. 7(4):618–625.

    Article  Google Scholar 

  • Barr, A., 1981. Superquadrics and angle preserving transformations,IEEE Comput. Graph. Appl. 1(1):11–23.

    Article  Google Scholar 

  • Besl, P.J., 1988. Geometric modeling and computer 11263on,Proc. IEEE 76(8): 936–958.

    Article  Google Scholar 

  • Besl, P.J., and Jain, R., 1988. Segmentation through variable-order surface fitting,IEEE Trans. Patt. Anal. Mach. Intell. 10(2): 167–192.

    Article  Google Scholar 

  • Bhanu, B., and Henderson, T.C., 1985. CAGD based 3-D 11263on.Proc. IEEE Intern. Conf. Robot. Autom., St. Louis, pp. 411–417.

  • Bidasaria, H.B., 1992. Defining and rendering of textured objects through the use of exponential functions,CVGIP: Graph. Models and Image Process. 54(2):97–102.

    Google Scholar 

  • Binford, T.O., 1971. Visual perception by a computer,Proc. IEEE Conf. Systems Controls, Miami.

  • Binford, T.O., 1982. Survey of model-based image analysis systems,Intern. J. Robot. Res. 1(1):18–64.

    Article  Google Scholar 

  • Blinn, J.F., 1982. A generalization of algebraic surface drawing,ACM Trans. Graphics 1(3):235–256.

    Article  Google Scholar 

  • Brooks, R.A., 1982. Model-based three-dimensional interpretations of two-dimensional images,IEEE Trans. Patt. Anal. Mach. Intell. 5(2):140–150.

    Google Scholar 

  • Castleman, K.R., 1981.Digital Image Processing, Prentice-Hall: Englewood Cliffs, NJ.

    Google Scholar 

  • Chin, R.T., and Dyer, C.R., 1986. Model-based recognition in robot 11263on,Computing Surveys 18(1):67–108.

    Article  Google Scholar 

  • Chow, C.K., and Kaneko, T., 1972. Automatic boundary detection of the left-ventricle from cineangiograms,Comput. Biomed. Res. 5:388–410.

    Article  Google Scholar 

  • Cohen, L.D., 1991. On active contour models and balloons,CVGIP: Image Understanding 53(2):211–218.

    Article  MATH  Google Scholar 

  • Delingette, H., Hebert, M., and Ikeuchi, K., 1992. Shape representation and image segmentation using deformable surfaces,Image Vis. Comput. 10(3):132–144.

    Article  Google Scholar 

  • Epstein, M., 1980. On the influence of parameterization in parametric interpolation,Numer. Anal. 17(2):238–246.

    Article  MathSciNet  Google Scholar 

  • Farin, G., 1988.Curves and Surfaces for Computer Aided Geometric Design. Academic Press: New York.

    MATH  Google Scholar 

  • Farin, G., 1991.NURBS for curve and surface design, Soc. Indust. Applied Math., Philadelphia.

  • Farin, G., 1992. From conics to NURBS: A tutorial and survey,IEEE Comput. Graph. Appl. 12:78–86.

    Article  Google Scholar 

  • Faugeras, O.D., and Herbert, M., 1986. The representation, recognition, and locating of 3-D objects,Intern. J. Robot. Res. 5(3):27–52.

    Article  Google Scholar 

  • Faux, I.D. and Pratt, M.J., 1979.Computational Geometry for Design and Manufacture, Ellis Horwood: Chichester.

    MATH  Google Scholar 

  • Fisher, R., 1987. SMS: A suggestive modeling system for object recognition,Image Vis. Comput. 5(2):98–104.

    Article  Google Scholar 

  • Gordon, W.J., and Riesenfeld, R.F., 1974. Bernstein-Bézier methods for the computer aided design of free-form curves and surfaces,J. Assoc. Comput. Mach. 21(2):293–310.

    Article  MathSciNet  MATH  Google Scholar 

  • Goshtasby, A., Cheng, F., and Barsky, B., 1990. B-spline curves and surfaces viewed as digital filters,Comput. Vis. Graph., Image Process. 52:264–275.

    Article  Google Scholar 

  • Goshtasby, A., and O'Neill, W., 1993. Surface fitting to scattered data by a sum of Gaussians,Computer Aided Geometric Design, in press.

  • Goshtasby, A., Turner, D., and Ackerman, L., 1992. Matching of tomographic slices for interpolation,IEEE Trans. Med. Imag., 11(4): 507–516.

    Article  Google Scholar 

  • Grimson, W.E.L., 1983. An implementation of a computational theory of visual surface interpolation,Comput. Vis. Graph., Image Process. 22:39–69.

    Article  Google Scholar 

  • Hall, E.-L., Tio, J.B.K., McPherson, C.A., and Sadjadi, F.A., 1982. Measuring curved surfaces for robot 11263on,Computer 15(12):42–54.

    Article  Google Scholar 

  • Ichida, K., Kiyono, T., and Yoshimoto, F., 1977. Curve fitting by a one-pass method with piecewise cubic polynomial,ACM Trans. Math. Software 3(2):164–174.

    Article  MATH  Google Scholar 

  • Jain, A.K., 1989.Fundamentals of Digital Image Processing. Prentice-Hall: Englewood Cliffs, N.J.

    MATH  Google Scholar 

  • Kass, M., Witkin, A., and Terzopoulos, D., 1988. Snakes: Active contour models,Intern. J. Comput. Vis. 1(4):321–331.

    Article  Google Scholar 

  • Kochanek, D.H.U., and Battles, R.H., 1984. Interpolating splines with local tension, continuity, and bias control,Computer Graphics 18(3):33–41.

    Article  Google Scholar 

  • Kuan, D.T., and Drazovich, R.J., 1986. Model-based interpretation of 3-D range data,Techniques for 3-D Machine Perception, A. Rosenfeld, (ed.), North-Holland: New York, pp. 219–230.

    Google Scholar 

  • Laurendeau, D., and Poussart, D., 1987. Model building of three dimensional polyhedral objects using 3D edge information and hemispheric histogram,IEEE J. Robot. Autom. 3(5):459–470.

    Article  Google Scholar 

  • Lee, E.T.Y., 1987. The rational Bézier representation for conics,Geometric Modeling: Algorithms and New Trends, G.E. Farin (ed.), Society for Industrial and Applied Mathematics, pp. 3–19.

  • Lee, E.T.Y., 1989. Choosing nodes in parametric curve interpolation,Comput.-Aided Design 21(6):363–370.

    Article  MATH  Google Scholar 

  • Loop, C., and DeRose, T., 1989. A multisided generalization of Bézier surfaces,ACM Trans. Graphics 8:204–234.

    Article  MATH  Google Scholar 

  • Lorensen, W., and Cline, H., 1987. Marching cubes: A high resolution 3-D surface construction algorithm,Computer Graphics 21(4):163–169.

    Article  Google Scholar 

  • Marquardt, D.W., 1962. An algorithm for least-squares estimation of nonlinear parameters,J. Soc. Indust. Appl. Math. 11(2):431–441.

    Article  MathSciNet  Google Scholar 

  • Marr, D., and Nishihara, H.K., 1978. Representation and recognition of the spatial organization of three-dimensional shapes,Proc. Roy. Soc. London B-200:269–294.

    Article  Google Scholar 

  • Muraki, S., 1991. Volumetric shape description of range data using blobby model,Computer Graphics 25(4):227–235.

    Article  Google Scholar 

  • Nevatia, R., and Binford, T.O., 1977. Description and recognition of curved objects,Artificial Intelligence 8:77–98.

    Article  MATH  Google Scholar 

  • Pentland, A.P., 1990. Automatic extraction of deformable parts models,Intern. J. Comput. Vis. 4:107–126.

    Article  Google Scholar 

  • Piegl, L., 1991. On NURBS: A survey,IEEE Comput. Graph. Appl. 11(2):55–71.

    Article  Google Scholar 

  • Pollard, S.G., Porrill, J., Meyhew, J.E.W., and Frisby, J.P., 1987. Matching geometrical descriptions in three-space,Image Vis. Comput. 5(2):73–78.

    Article  Google Scholar 

  • Pollard, S.G., Pridmore, T.P., Porrill, J., Meyhew, J.E.W., and Frisby, J.P., 1989. Geometrical modeling from multiple stereo views,Intern. J. Robot. Res. 8(4):3–32.

    Article  Google Scholar 

  • Ponce, J., Chelberg, D., and Mann, W.B., 1989. Invariant properties of straight homogeneous generalized cylinders and their contours,IEEE Trans. Patt. Anal. Mach. Intell. 11(9):951–966.

    Article  Google Scholar 

  • Raja, N.S., and Jain, A.K., 1992. Recognizing geons from Superquadrics fitted to range data,Image Vis. Comput. 10(3):179–190.

    Article  Google Scholar 

  • Sahoo, P.K., Soltani, S., Wong, A.K.C., and Chen, Y.C., 1988. A survey of thresholding techniques,Comput. Vis. Graph., Image Process. 41:233–260.

    Article  Google Scholar 

  • Sarkar, B., and Menq, C.-H., 1991. Parameter optimization in approximating curves and surfaces to measurement data,Comput. Aided Geom. Design 8:267–290.

    Article  MathSciNet  MATH  Google Scholar 

  • Schagen, I.P., 1980. The use of stochastic processes in interpolation and approximation,Intern. J. Comput. Math. B8:63–76.

    Article  MathSciNet  Google Scholar 

  • Solina, F., and Bajcsy, R., 1990. Recovery of parametric models from range images: The case for Superquadrics with global deformations,IEEE Trans. Patt. Anal. Mach. Intell. 12(2):131–147.

    Article  Google Scholar 

  • Stockman, G., and Chen, S.-W., 1985. Experiments in 3-D Data Acquisition Using a Camera and Projector, Tech. Rept. #85-023, Department of Computer Science, Michigan State University.

  • Sugihara, K., 1986.Machine Interpretation of Line Drawings, MIT Press: Cambridge, MA.

    Google Scholar 

  • Terzopoulos, D., 1988. The computation of 11263ble-surface representations,IEEE Trans. Patt. Anal. Mach. Intell. 10(4):417–438.

    Article  MATH  Google Scholar 

  • Terzopoulos, D., and Metaxas, D., 1991. Dynamic 3-D models with local and global deformations: Deformable Superquadrics,IEEE Trans. Patt. Anal. Mach. Intell. 13(7):703–714.

    Article  Google Scholar 

  • Terzopoulos, D., Witkin, A., and Kass, M., 1988. Constraints on deformable models: Recovering 3D shape and nonrigid motion,Artificial Intelligence 36:91–123.

    Article  MATH  Google Scholar 

  • Varady, T., 1987. Survey and new results in n-sided patch generation.The Mathematics of Surfaces, R. Martin (ed.), Oxford University Press: New York, pp. 203–236.

    Google Scholar 

  • Yanowitz, S.D., and Bruckstein, A.M., 1989. A new method for image segmentation,Comput. Vis. Graph., Image Process. 46:82–95.

    Article  Google Scholar 

  • Zucker, S.W., and Hummel, R.A., 1981. A three-dimensional edge operator,IEEE Trans. Patt. Anal. Mach. Intell. 3(3):324–331.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goshtasby, A. Design and recovery of 2-D and 3-D shapes using rational Gaussian curves and surfaces. Int J Comput 11263on 10, 233–256 (1993). https://doi.org/10.1007/BF01539537

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01539537

Keywords

Navigation