Skip to main content
Log in

A variational inequality approach to optimal plastic design of structures via the Prager-Rozvany theory

  • Technical Papers
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

The theory of optimal plastic design of structures via optimality criteria (W. Prager approach) transforms the optimal design problem into a certain nonlinear elastic structural analysis problem with appropriate stress-strain laws, which are derived by the adopted specific cost function for the members of the structure and which generally have complete vertical branches. Moreover, the concept of structural universe (introduced by G.I.N. Rozvany) permits us to tackle complicated optimal layout problems.

On the other hand, a significant effort in the field of nonsmooth mechanics has recently been devoted to the solution of structural analysis problems with “complete” material and boundary laws, e.g. stress-strain laws or reaction-displacement laws with vertical branches.

In this paper, the problem of optimal plastic design and layout of structures following the approach of Prager-Rozvany is revised within the framework of recent progress in the area of nonsmooth structural analysis and it is treated by means of techniques primarily developed for the solution of inequality mechanics problems. The problem of the optimal layout of trusses is used here as a model problem. The introduction of general convex, continuous and piecewise linear specific cost functions for the structural members leads to the formulation of linear variational inequalities or equivalent piecewise linear, convex but nonsmooth optimization problems. An algorithm exploiting the particular structure of the minimization problem is then described for the numerical solution. Thus, practical structural optimization problems of large size can be treated. Finally, numerical examples illustrate the applicability and the advantages of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achtziger, W.; Bendsøe, M.; Ben-Tal, A.; Zowe, J. 1991: Equivalent displacement based formulations for maximum strength truss topology design.Rep. No. 338. Schwerpunktprogramm der DFG, Anwendungsbezogene Optimierung und Steuerung, Universität Bayreuth

  • Allaire, G; Kohn, R.V. 1993: Topology optimization and optimal shape design using homogenization. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 207–218. Dordrecht: Kluwer

    Google Scholar 

  • Antes, H.; Panagiotopoulos, P.D. 1992:An integral equation approach to the static and dynamic contact problems. Equality and inequality methods. Boston: Birkhäuser

    Google Scholar 

  • Delfour, M.C. (ed.) 1992:Shape optimization and free boundaries. NATO ASI Series C 380. Dordrecht: Kluwer

    Google Scholar 

  • Aubin, J.-P.; Ekeland, I. 1984:Applied nonlinear analysis. Chicester: John Wiley and Sons

    Google Scholar 

  • Bendsøe, M.P.; Ben-Tal, A.; Zowe, J. 1993: Optimization methods for truss geometry and topology design.Rep. No. 449. Schwerpunktprogramm der DFG, Anwendungsbezogene Optimierung und Steuerung, Universität Bayreuth

  • Ben-Tal, A.; Bendsøe, M.P. 1993: A new method for optimal truss topology design.SIAM J. Optimization 3, 323–358

    Google Scholar 

  • Clarke, F.H. 1975: Generalized gradients and applications.Trans. Amer. Math. Soc. 205, 247–262

    Google Scholar 

  • Clarke, F.H. 1983:Optimization and nonsmooth analysis. New York: John Wiley & Sons

    Google Scholar 

  • Dorn, W.S.; Gomory, R.E.; Greenberg, H.J. 1964: Automatic design of optimal structures.J. Mécan. 3, 25–165

    Google Scholar 

  • Drucker, D.C.; Prager, W. 1952: Soil mechanics and plastic analysis or limit design.Quart. Appl. Math. X, 157–165

    Google Scholar 

  • Duvaut, G; Lions, J.L. 1972:Les inéquations en méchanique et en physique. Paris: Dunod (English translation 1970:Inequalities in mechanics and physics. Vienna: Springer)

    Google Scholar 

  • Fletcher, R. 1987:Practical optimization methods (2nd edition) New York: John Wiley & Sons

    Google Scholar 

  • Fremond, M. 1988: Yield theory in physics. In: Moreau, J.J.; Panagiotopoulos, P.D.; Strang, G. (eds.)Topics in nonsmooth mechanics, pp. 187–240. Boston: Birkhäuser

    Google Scholar 

  • Glowinski, R.; Lions, J.L.; Tremolieres, R. 1981:Numerical analysis of variational inequalities. Studies in Mathematics and its Applications 8, Amsterdam, New York: North-Holland, Elsevier

    Google Scholar 

  • Hill, R.H.; Rozvany, G.I.N. 1985: Prager's layout theory: a nonnumeric computer method for generating optimal structural configurations and weight influence surfaces.Comp. Meth. Appl. Engrg. 49, 131–148

    Google Scholar 

  • Hlavaček, I.; Haslinger, J.; Nečas, J.; Loviček, J. 1988:Solution of variational inequalities in mechanics. Appl. Math. Sci. 66. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Höfler, A.; Leyßner, U.; Wiedemann, J. 1973: Optimization of the layout of trusses combining strategies based on Michell's theorem and the biological principles of evolution.AGARD Conf. Proc. 123, A.1-A.8

    Google Scholar 

  • Jog, G.; Haber, R.; Bendsøe, M.P. 1993: A displacement-based topology design method with self-adaptive layered materials. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 219–238. Dordrecht: Kluwer

    Google Scholar 

  • Koltsakis, E.K. 1991:Theoretical and numerical study of structures with nonmonotone boundary conditions. Applications in glued joints. Ph.D. Thesis, Aristotle University, Thessaloniki

    Google Scholar 

  • Lagache, J.M. 1980: A geometrical procedure to design trusses in a given area.Eng. Opt. 5, 1–12

    Google Scholar 

  • Maier, G. 1977: Limit design in the absence of a given layout: a finite element zero—one programming problem. In: Gallagher, R.H.; Zienkiewicz, O.C. (eds.):Optimum structural design/theory and applications, pp. 223–239. New York: John Wiley & Sons

    Google Scholar 

  • Mandel, J. 1978:Propriétés mécaniques des matériaux/réologie — plasticité. Paris: Eyrolles

    Google Scholar 

  • Michell, A.G.M. 1904: The limits of economy of material in framestructures.Phil. Mag. 8, 589–597

    Google Scholar 

  • Mistakidis, E. 1992:Theoretical and numerical study of structures with nonmonotone boundary and material laws. Algorithms and applications. Ph.D. Thesis, Aristotle University, Thessaloniki

    Google Scholar 

  • Moreau, J.J.; Panagiotopoulos, P.D. (eds.) 1988:Nonsmooth mechanics and applications. CISM Lecture Notes 302, pp. 82–176. Vienna, New York: Springer

    Google Scholar 

  • Moreau, J.J.; Panagiotopoulos, P.D.; Strang, G. (eds.) 1988:Topics in nonsmooth mechanics. Boston: Birkhäuser

    Google Scholar 

  • Panagiotopoulos, P.D. 1976: Convex analysis and unilateral static problems.Ing. Arch. 45, 55–68

    Google Scholar 

  • Panagiotopoulos, P.D. 1983: Nonconvex energy functions. Hemivariational inequalities and substationarity principles.Acta Mech. 42, 160–183

    Google Scholar 

  • Panagiotopoulos, P.D. 1985:Inequality problems in mechanics and applications/convex and nonconvex energy functionals. Boston: Birkhäuser (Russian translation by MIR Publishers, Moscow, 1989)

    Google Scholar 

  • Panagiotopoulos, P.D. 1988a: Nonconvex superpotentials and hemivariational inequalities. Quasi—differentiability in mechanics. In: Moreau, J.J.; Panagiotopoulos, P.D. (eds.)Nonsmooth mechanics and applications, pp. 82–176. Wien: Springer

    Google Scholar 

  • Panagiotopoulos, P.D. 1988b: Hemivariational inequalities and their applications. In: Moreau, J.J.; Panagiotopoulos, P.D.; Strang, G. (eds.)Topics in nonsmooth mechanics, pp. 75–141. Basel: Birkhäuser

    Google Scholar 

  • Panagiotopoulos, P.D. 1993:Hemivariational inequalities and their applications in mechanics and engineering. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Pedersen, P. 1970: On the minimum mass layout of trusses.AGARD Conf. Proc. 36, 11.1–11.17

    Google Scholar 

  • Pedersen, P. 1973: Optimal joint positions for space structures.AGARD Conf. Proc. 123, 12.1–12.14

    Google Scholar 

  • Pedersen, P. 1993: Topology optimization of three dimensional trusses. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 19–30. Dordrecht: Kluwer

    Google Scholar 

  • Prager, W. 1973: Necessary and sufficient conditions for global structural optimality.AGARD Conf. Proc. 123, 1.1–1.12

    Google Scholar 

  • Prager, W.; Shield, R.T. 1967: A general theory of optimal plastic design.J. Appl. Mech. 34, 184–186

    Google Scholar 

  • Rockafellar, R.T. 1970:Convex analysis. Princeton: Princeton Press

    Google Scholar 

  • Rozvany, G.I.N. 1976:Optimal design of flexural systems: beams, grillages, slabs, plates and shells. New York: Pergamon Press

    Google Scholar 

  • Rozvany, G.I.N. 1981a: Variational methods and optimality criteria. In: Haug, E.J.; Cea, J. (eds.)Optimization of distributed parameter systems, Volume 2, pp. 82–111. Alphen aan den Rijn: Sijthoff and Noordhoff

    Google Scholar 

  • Rozvany, G.I.N. 1981b: Optimal criteria for grids shells and arches. In: Haug, E.J.; Cea, J. (eds.)Optimization of distributed parameter systems, Volume 2, pp. 112–151. Alphen aan den Rijn: Sijthoff and Noordhoff

    Google Scholar 

  • Rozvany, G.I.N. 1985: Generalization of Heyman's and Foulkes' theorems using dual formulations.Int. J. Mech. Sci. 27, 347–360

    Google Scholar 

  • Rozvany, G.I.N. 1989:Structural design via optimality criteria/the Prager approach to structural optimization. Dordrecht: Kluwer

    Google Scholar 

  • Rozvany, G.I.N. 1992: Optimal layout theory: analytical solutions for elastic structures with several deflection constraints and load conditions.Struct. Optim. 4, 247–249

    Google Scholar 

  • Rozvany, G.I.N.; Hill, R.H. 1978: Optimal plastic design: superposition principles and bounds on the minimum cost.Comp. Meth. Appl. Mech. Eng. 13, 151–173

    Google Scholar 

  • Rozvany, G.I.N.; Zhou, M; Gollub, W. 1990: Continuum-type optimality criteria methods for large finite element systems with a displacement constraint. Part II.Struct. Optim. 2, 77–104

    Google Scholar 

  • Stavroulakis, G.E. 1991:Analysis of structures with interfaces/formulation and study of variational — hemivariational inequality problems. Ph.D. Thesis, Aristotle University, Thessaloniki

    Google Scholar 

  • Strang, G. 1987: A framework for equilibrium equations.Num. Anal. Rep. 87-4, Dept. Math., MIT, Cambridge

    Google Scholar 

  • Strang, G.; Kohn, R.V. 1985: Hencky-Prandtl nets and constrained Michell trusses.Comp. Meth. Appl. Mech. Engrg. 36, 207–222

    Google Scholar 

  • Strang, G.; Kohn, R.V. 1986: Optimal design in elasticity and plasticity.Int. J. Num. Meth. Engrg. 22, 183–188

    Google Scholar 

  • Tzaferopoulos, M.A. 1991:Numerical analysis of structures with monotone and nonmonotone, nonsmooth material laws and boundary conditions: algorithms and applications. Ph.D. Thesis, Aristotle University, Thessaloniki

    Google Scholar 

  • Tzaferopoulos, M.A. 1993: On an efficient new numerical method for the frictional contact problem of structures with convex energy density.Comp. & Struct. 48, 87–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the Institute of Applied Mechanics, Department of Engineering Sciences, Technical University of Crete, GR-73100 Chania, Greece

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stavroulakis, G.E., Tzaferopoulos, M.A. A variational inequality approach to optimal plastic design of structures via the Prager-Rozvany theory. Structural Optimization 7, 160–169 (1994). https://doi.org/10.1007/BF01742461

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01742461

Keywords

Navigation