Skip to main content
Log in

Embedding Riemannian manifolds by their heat kernel

  • Published:
Geometric & Functional Analysis GAFA Aims and scope Submit manuscript

Abstract

By embedding a class of closed Riemannian manifolds (satisfying some curvature assumptions and with diameter bounded from above) into the same Hilbert space, we interpret certain estimates on the heat kernel as giving a precompactness theorem on the class considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [B1]P. Bérard, Spectral geometry: direct and inverse problems, Springer Lecture Notes in Math. 1207, 1986.

  • [B2]P. Bérard, From vanishing theorems to estimating theorems: the Bochner technique revisited, Bull. Amer. Math. Soc. 19 (1988), 371–406.

    Google Scholar 

  • [BBesG]P. Bérard, G. Besson, S. Gallot, Une inégalité isopérimétrique qui généralise celle de Paul Levy-Gromov, Invent. Math. 80 (1985), 295–308.

    Google Scholar 

  • [BG]P. Bérard, S. Gallot, Inégalités isopérimétriques pour l'équation de la chaleur et applications à l'estimation de quelques invariants, Séminaire Goulaouic-Meyer-Schwartz, exposé no. 15 (1983–84).

  • [BeGaM]M. Berger, P. Gauduchon, E. Mazet, Le spectre d'une variété riemannienne, Springer Lecture Notes in Math. 194, 1971.

  • [Bes1]G. Besson, A Kato type inequality for Riemannian submersions with totally geodesic fibers, Annals of Global Analysis and Geometry 4:3 (1986), 273–289.

    Google Scholar 

  • [Bes2]G. Besson, On symmetrization, in “Nonlinear Problems in Geometry” (D. De-Turck, ed.), Contemporary Mathematics 51 (1986), 9–21.

  • [C]I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, New-York 1984.

    Google Scholar 

  • [CdV]Y. Colin de Verdière, Sur la multiplicité de la première valeur propre non nulle du laplacien, Comment. Math. Helv. 61 (1986), 254–270.

    Google Scholar 

  • [Co]G. Courtois, Spectrum of manifolds with holes, Preprint (June 1992)

  • [F]H. Federer, Geometric measure theory, Grundlehren der mathematischen Wissenschaften 153, Springer-Verlag (1969).

  • [Fu1]K. Fukaya, Collapsing Riemannian manifolds to ones of lower dimensions, J. Differential Geom. 25 (1987), 139–156.

    Google Scholar 

  • [Fu2]K. Fukaya, Collapsing Riemannian manifolds and eigenvalues of the Laplace operator, Invent. Math. 87 (1987), 517–547.

    Google Scholar 

  • [Fu3]K. Fukaya, A boundary of the set of Riemannian manifolds with bounded curvature and diameter, J. Diff. Geom. 28:1 (1988), 1–21.

    Google Scholar 

  • [Fu4]K. Fukaya, Collapsing Riemannian manifolds to ones of lower dimension, II, Math. Soc. Japan 41:2 (1989), 333–356.

    Google Scholar 

  • [G]S. Gallot, Inégalités isopérimétriques et analytiques sur les variétés riemanniennes, S.M.F. Astérisque 163/164 (1988), 31–91.

    Google Scholar 

  • [Gr]M. Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), 1–147.

    Google Scholar 

  • [GrLP]M. Gromov, J. Lafontaine, P. Pansu, Structures métriques pour les variétés Riemanniennes, Cédic-Fernand Nathan (1981).

  • [HSU]H. Hess, R. Schrader, D.A. Uhlenbrock, Kato's inequality and the spectral distribution of Laplacians on compact Riemannian manifolds, J. Diff. Geom. 15 (1980), 27–38.

    Google Scholar 

  • [KKu]A. Kasue, H. Kumura, Spectral convergence of Riemannian manifolds, preprint (1992).

  • [L]H.B. Lawson, Lectures on minimal submanifolds, Lecture series 9, Publish or Perish Inc., Berkeley (1980).

    Google Scholar 

  • [Mu]H. Muto, On the spectral distance, preprint (1988).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been supported in part by the E.C. Contract SC 1-0105-C “G.A.D.G.E.T.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bérard, P., Besson, G. & Gallot, S. Embedding Riemannian manifolds by their heat kernel. Geometric and Functional Analysis 4, 373–398 (1994). https://doi.org/10.1007/BF01896401

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01896401

Keywords

Navigation