Skip to main content
Log in

A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Si formulano, con notazione matriciale, generali leggi costitutive linearizzate a tratti e dotate di normalità, e se ne discutono alcune proprietà e la specializzazione ad usuali tipi di incrudimento (in particolare cinematico ed isotropo). Riferendosi a modelli strutturali per elementi finiti, si ottengono i risultati seguenti:a) la soluzione olonoma per dati carichi e distorsioni viene caratterizzata da sei proprietà estremali di natura “quadraticolineare”, due di validità generale, quattro di validità condizionata;b) corrispondenti teoremi in ambito differenziale vengono proposti per analogia; si danno degli enunciati di confronto tra soluzioni olonome ed anolonome;c) si fornisce un teorema sull'assestamento in campo elastico sotto azioni esterne variabili in presenza di forze d'inerzia e resistenze viscose, generalizzando alle structure incrudenti un teorema di Ceradini, e per specializzazione ai casi quasi-statici quello di Melan;d) si propone un metodo per valutare in assenza di scarichi locali, o delimitare superiormente il coefficiente di sicurezza nei confronti di rotture locali dovute a limitata deformabilità plastica.

Summary

General piecewise linear constitutive laws with associated flow rules are formulated in matrix notation; some properties and specializations (in particular to kinematic and isotropic hardening) are discussed.

With reference to finite element models of structures and, hence, in matrix-vector description, the following results are achieved:

a) the holonomic solutions to the analysis problem for given loads and dislocations are shown to be characterized by means of six “quadratic-linear” minimum principles, two of general, four of conditioned validity;b) the incremental counterparts of the above theorems are indicated by analogy; some comparison properties concerning holonomic and nonholonomic solutions, are pointed out;c) a shakedown theorem is established for variable repeated loads and dislocations, with allowance for inertia forces and viscous damping, i. e. a generalization to workhardening structures of Ceradini's and (in quasi-static situations) Melan's theorems;d) a method is proposed for evaluating under holonomy hypothesis, or bounding from above, the safety factor with respect to local failure due to limited plastic strain capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. P. Cicala,Le relazioni fra tensioni e deformazioni in elastoplasticità, “Mem. Acc. Sc.”, Torino, 1960.

  2. P. M. Naghdi,Stress-strain relations in plasticty and thermo-plasticity, in “Plasticity”, Pergamon Press, 1960.

  3. W. Prager,Models of plastic behavior, “Proc. V, U.S. Nat. Congr. Appl. Mech.”, ASME, New York, 1966.

    Google Scholar 

  4. Z. Mróz,Non tinear flow-laws in the theory of plasticity, “Bull. Acad. Polon. Sci.”, V. XII, N. 11, 1964.

  5. J. Mandel,Contribution théorique a l'étude de l'écrouissage et des lois de l'écoulement plastique, “Appl. Mech.; Proc. of the 11th Int. Congr. of Appl. Mech.”, Munich, 1964.

  6. J. Mandel,Généralization de la théorie de plasticité de W. T. Koiter, “Int. J. Solids Structures”, N. 4, 1965.

  7. G. Maier,“Linear” flow-laws of elastoplasticity: a unified general approach “Rend. Acc. Naz. Lincei”, 142A, 1969.

  8. Z. Mróz,On the description of anisotropic workhardening, “J. Mech. Phys. Solids”, 15, N. 3, 1967.

    Google Scholar 

  9. I. Berman andP. G. Hodge,A general theory of piecewise linear plasticity for initially anisotropic materials, “Arch. Mechan. Stosow.”, XI, 5, 1959.

    Google Scholar 

  10. G. Maier,Teoremi di minimo in termini finiti con leggi costitutive linearizzate a tratti, “Rendic. Ist. Lomb. Sci. Lett.”, V. 103, 1969.

  11. B. G. Neal,Plastic collapse and shakedown theorems for structures of strainhardening materials, “J. Aero. Sci.”, 17, N. 5. 1950.

  12. B. G. Neal,The plastic methods of structural analysis, Chapman & Hall Ltd., London, 1963.

    Google Scholar 

  13. G. Ceradini,Sull'adattamento dei corpi elasto-plastici soggetti ad azioni dinamiche, “Giorn. Genio Civile”, may, 1969.

  14. G. Maier,Shakedown theory in perfect elastoplasticity with associated flow-laws: a finite element, linear programming approach, “Meccanica”, N. 3, 1969.

  15. G. Macchi,Limit-states design of statically indeterminate structures composed of linear membres, “Studi e Rend. Corso Perfez. Costr. Cem. Arm.”, Politecnico di Milano, 1969.

  16. P. D. Arthur andV. Ramakrishnan,Ultimate strength design for structural concrete, I. Pitman & Sons Ltd., London, 1969.

    Google Scholar 

  17. J. H. Argyris,Continua and discontinua, in “Matrix methods in struct. mech.” Proc. Conf. Wright-Patterson AFB, Ohio, 1967.

  18. J. S. Przemieniecki,Theory of matrix structural analysis, McGraw-Hill Comp., New York, 1967.

    Google Scholar 

  19. G. Maier,A quadratic programming approach for certain nonlinear structural problems, “Meccanica”, N. 2, 1968.

  20. G. B. Dantzig andA. F. Veinott Ed.,Mathematics of the decision sciences, Part I, Am. Math. Soc., Providence, 1968.

    Google Scholar 

  21. R. W. Cottle,Note on a fundamental theorem in quadratic programming. “J. Soc. Industr. Appl. Math.”, 12, 1964.

  22. B. Paul, W. Chen andL. Lee,An experimental study of plastic flow under stepwise increments of tension and torsion, “Proc. 4th U. S. Nat. Congr. Appl. Mech.”, ASME, New York, 2, 1962.

    Google Scholar 

  23. D. R. Jenkins,Kinematic hardening in zincalloy tubes, “J. Appl. Mech.” 32, 1965.

  24. J. Parker andM. B. Bassett,Plastic stress-strain relationship: some experiments to derive a subsequent yield surface. “J. Appl. Mech.”, 31, 1964.

  25. G. Maier,Incremental plastic analysis in the presence of large displacements and physical instabilizing effects, “Techn. Report, Ist. Sc. Tecn. Costr., Politecnico, Milano, Dec., 1969.

  26. H. P. Künzi andW. Krelle,Nonlinear programming, Blaisdell Publ. Comp, Waltham, 1966.

    Google Scholar 

  27. K. Ritter,A method for solving maximum problems with a nonconcave quadratic objective function, “Z. Wahrscheinlischkeitstheoric verw. Geb.” 4, 1966.

  28. M. Capurso andG. Maier,Incremental elastoplastic analysis and quadratic optimization, “Meccanica”, N. 2, 1970.

  29. W. T. Koiter,General theorems for elastic-plastic solids “Progr. in Solid Mech.”, North-Holland, Amsterdam, 1960.

    Google Scholar 

  30. G. Gavarini,sull rientro in fase elastica delle vibrazioni forzate elasto-plastiche, “Giorn. Genio Civile”, may, 1969.

  31. P. Wolfe,The simplex method for quadratic programming, “Econometrica”, 27, 1959.

  32. K. Kirchgässner,Ein Verfabren zur Maximierung linearer Funktionen in nichtkonvexen Bereichen, “Z. angew. Math. Mech.”, 42, T, 1962.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The study presented here forms part of a research program supported by the C.N.R. (Gruppo Plasticità).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, G. A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes. Meccanica 5, 54–66 (1970). https://doi.org/10.1007/BF02133524

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02133524

Keywords

Navigation