Skip to main content
Log in

A rationally based yield criterion for work hardening materials

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Si considera lo sviluppo di una razionale condizione di plasticità per materiali con incrudimento. Nel tentativo di costruire una sola funzione analitica per rappresentare il comportamento plastico del materiale, la matematica della meccanica dei continui è combinata con considerazioni statiche onde definire una condizione di plasticità che tenga conto dell'implicita inomogeneità nella distribuzione di sforzi e deformazioni in un aggregato policristallino.

Si propone un modello matematico che prende in considerazione inclusioni sferiche anisotrope avvolta da materiale elastoplastico. La condizione di plasticità derivata da questo modello è basata su tre considerazioni principali, (a) argomenti che involvono il valore locale della densità di energia di deformazione al taglio, (b) la soluzione di Eshelby per lo sforzo locale che agisce su ogni inclusione sferica in una matrice infinita e (c) la statistica dei valori estremi.

Si dà un esempio sulla capacità del criterio di plasticità di interpretare i risultati ottenuti su tubi di alluminio sottile precaricato nello spazio tensione-torsione.

Summary

The paper is concerned with the development of a rationally based yield criterion for work hardening materials. In an attempt to construct a single analytical function to represent yield behaviour the mathematics of continuum mechanics is combined with a statistical argument to produce a yield criterion which takes into account the inherent inhomogeneity of stress and strain distribution throughout a polycrystalline aggregate.

A mathematical model is proposed which consists of spherical, anisotropic inclusions embedded in an elastic-plastic matrix. The yield criterion derived from this model is based on three main considerations, (a) arguments involving the local value of shear strain energy density, (b) Eshelby's solution for the local stress acting on a spherical inclusion in an infinite matrix and (c) the statistics of extreme values.

An example is given on the fitting of the yield criterion to the results of thin-walled aluminium tubes prestrained in tensiontorsion space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

A ijkl :

anisotropy tensor

A 0 :

anisotropy parameter

b :

constant

c :

work hardening modules

C ijkl :

parameter governing inclusion density

e ij :

local elastic strain

E ij :

aggregate elastic strain

e ij P :

local plastic strain

E ij P :

aggregate plastic strain

G :

clastic shear modulus

H ijkl :

Hookean elastic tensor

I ijkl :

isotropic tensor

k, K :

constants governing strain distribution and inclusion density

L ijkl :

distortion parameter

m :

Bauschinger parameter

δ ij :

Kronecker delta

λ ij :

statistical strain distribution parameter

ϑ :

Poisson's ratio

σ ij :

aggregate stress

μ, λ :

parameters associated with the Laplace probability density function.

References

  1. T. H. Lin andM. Ito,Theoretical Plastic Stress-Strain Relationship of a Polycrystal and the comparisons with the von Mises and the Tresca Plasticity Theories, Int. Jnl. Eng. Sc.,4, 543, 1966.

    Google Scholar 

  2. T. H. Lin andM. Ito,Theoretical Plastic Distortion of a Polycrystalline Aggregate under Combined and Reversed Stresses, Jnl. Mech. Phys. Sol.,13, 103, 1965.

    Google Scholar 

  3. B. Budiansky, andT. T.Wu,Theoretical Prediction of Plastic Strains of Polycrystals, Proc. 4th U.S. Nat. Congr. App. Mech., 1175, 1962.

  4. B. Budiansky, Z. Hashin andJ. L. Sanders Jr.,The Stress Field of a Slipped Crystal and the early Plastic Behaviour of Polycrystalline Materials, Proc. 2nd Symp. Naval and Structural Mechanics, 239, 1960.

  5. J.W. Hutchinson,Plastic Stress-Strain Relations of F.C.C. Polycrystalline Metals Hardening According to Taylor's Rule, Jnl. Mech. Phys. Sol.,12, 11, 1964.

    Google Scholar 

  6. J. W. Hutchinson,Plastic Deformation of B.C.C. Polycrystals, Jnl. Mech. Phys. Sol.12, 25, 1964.

    Google Scholar 

  7. S. B. Batdorf andB. Budiansky,A Mathematical Theory of Plasticity based on the Concept of Slip, N.A.C.A. T.N. 1871, 1949.

  8. E. H. Edwards andJ. Washburn,Strain Hardening of Latent Slip Systems in Zinc Crystals, Jnl. Metals,6, 1239 1954.

    Google Scholar 

  9. D. B. Holt,Effects of Torsion on the Tensile Stress-Strain Curve of Aluminium, Acta Met.,7, 446, 1969.

    Google Scholar 

  10. G. I. Taylor andC. F. Elam,The Plastic Extension and Fracture of Aluminium Crystals, Proc. Roy. Soc.,108A, 20, 1925.

    Google Scholar 

  11. J. E. Bailey andP. B. Hirsch,The Dislocation Distribution, Flow Stress and Stored Energy in Cold Worked Polycrystalline Silver, Phil. Mag.,5, 485, 1960.

    Google Scholar 

  12. A. H. Cottrell,Dislocations and Plastic Flow in Crystals, Oxford University Press, 1946.

  13. E. Orowan,Causes and Effects of Internal Stresses, G. M. Symposium on Internal Stresses and Fatigue in Metals, Elsevier Pub. Co., Amsterdam, 1959.

    Google Scholar 

  14. J. Friedel,On the Linear Work Hardening Rate of F.C.C. Single Crystals, Phil. Mag.,4, 1169, 1955.

    Google Scholar 

  15. A. Seegery J. Diehl, S. Mader andR. Rebstock,Work Hardening and Work Softening of Face Centered Cubic Metal Crystals, Phil. Mag.,2, 323, 1957.

    Google Scholar 

  16. D. McLean,Mechanical Propierties of Metals, Wiley, N.Y. 1962.

  17. Y. Yoshimura,Hypothetical Theory of Anisotropy and the Bauschinger Effect due to a Plastic Strain History, Acro Res. Inst., Univ. of Toky, Rep. no. 349, 1959.

  18. A. Baltov andA. Sawczuk,A Rule of Anisotropic Hardening, Acta Mech., Vol. 1,1, 81, (1965).

    Google Scholar 

  19. F. Edelman andD. C. Crucker,Some Extensions to Elementary Plasticity Theory, Jnl. Franklin Inst.,251, 581, 1951

    Google Scholar 

  20. G. I. Taylor,Plastic Strain in Metals, Jnl. Inst. Metals,62, 307, 1938.

    Google Scholar 

  21. E. H. Edwards, J. Washburn andE. R. Parker,Some Observations of the Work Hardening of Metals, Jnl. Metals,5, 1525, 1953.

    Google Scholar 

  22. S. N. Buckley andK. M. Entwistle,The Bauschinger Effect in Super-pure Aluminium Single Crystals and Polycrystals, Acta Met.,4, 352, 1956.

    Google Scholar 

  23. G. I. Bykotsev, V. V. Dudalenko andD. D. Ivlev,On the Loading Functions of Anisotropically Hardening Plastic Materials, Jnl. App. Math. Mech.,28, 966, 1964.

    Google Scholar 

  24. T. K. Tung andT. H. Lin,Slip Strains and Stresses in Polycrystalline Aggregates under Cyclic Load, Jnl. App. Mech.,33, 363, 1966.

    Google Scholar 

  25. W. Prager,A New Method of Analysing Stress and Strains in Work Hardening Plastic Solids, Jnl. App. Mech.,23, 493, 1956.

    Google Scholar 

  26. N. L. Svensson,Anisotropy and the Bauschinger Effect in Cold Rolled Aluminium, Jnl. Mech. Eng. Sc.,8, 162, 1966.

    Google Scholar 

  27. J. D. Eshelby,The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems, Proc. Roy. Soc.,241A, 376, 1957.

    Google Scholar 

  28. B. Epstein,Statistical Aspects of Fracture Problems, Jnl. App. Phys.,19, 140, 1948.

    Google Scholar 

  29. A. E. Johnson andS. B. Batdorf,A Study of Slip Formation in Polycrystalline Aluminium, N.A.C.A., T.N. 2576, 1951.

  30. W. Boas andM. E. Hargreaves,On the Inhomogeneity of Plastic Deformation in the Crystals of an Aggregate, Proc. Roy. Soc.,193A, 89, 1948.

    Google Scholar 

  31. A. Esin andW. J. D. Jones,A Statistical Approach to Microplastic Strain in Metals, Jnl. Strain Analysis,1, 415, 1966.

    Google Scholar 

  32. G. I. Taylor,The Mechanism of Plastic Deformation of Metals, Proc. Roy. Soc.,145A, 362, 1934.

    Google Scholar 

  33. S. K. Mitra andJ. Dorn,On the Nature of Strain Hardening in Polycrystalline Aluminium - Magnesium Alloys, Trans. A.I.M.E.,227, 1015, 1963.

    Google Scholar 

  34. N. Brown andK. F. Lukens,Microstrain in Polycrystalline Metals, Acta Met.,9, 106, 1961.

    Google Scholar 

  35. J. C. Suits andB. Chalmers,Plastic Microstrain in Silicon Iron, Acta Met.,9, 854, 1961.

    Google Scholar 

  36. W. Weibull,A Statistical Theory of the Strength of Materials, Ing. Vetenskaps. Akad. Handl., no. 151, 1939.

  37. J. F. Williams andN. L. Svensson,Effect of Tensile Prestrain on the Yield Locus of 1100-F Aluminium, Jnl. Strain Anal.,5, 128, 1970.

    Google Scholar 

  38. M. Como andS. D'Agostino,Strain Hardening Plasticity with Bauschinger Effect, Meccanica4, 146, 1969.

    Google Scholar 

  39. P. M. Naghdi, F. Essenburg andW. Koff,An Experimental Study of Initial and Subsequent Yield Surfaces in Plasticity, Jnl. App. Mech.,25, 201, 1958.

    Google Scholar 

  40. I. I. Iagn andO. A. Shishmarev,Some Results of an Investigation on the Elastic Limits of Plastically Extended Nickle Samples, Dokl. Akad. Nauk., SSSR,119, 46, 1958.

    Google Scholar 

  41. H. J. Ivey,Plastic Stress-Strain Relations and Yield Surfaces for Aluminium Alloys, Jnl. Mech. Eng. Sc.,3, 15, 1961.

    Google Scholar 

  42. W. Szczepinski,On the Effect of Plastic Deformation on Yield Condition, Arch. Mech. Stos.,2, 275, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, J.F., Svensson, N.L. A rationally based yield criterion for work hardening materials. Meccanica 6, 104–114 (1971). https://doi.org/10.1007/BF02151650

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02151650

Keywords

Navigation