Skip to main content
Log in

Multidimensional successive categories scaling: A maximum likelihood method

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A single-step maximum likelihood estimation procedure is developed for multidimensional scaling of dissimilarity data measured on rating scales. The procedure can fit the euclidian distance model to the data under various assumptions about category widths and under two distributional assumptions. The scoring algorithm for parameter estimation has been developed and implemented in the form of a computer program. Practical uses of the method are demonstrated with an emphasis on various advantages of the method as a statistical procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference notes

  • Takane, Y., & Carroll, J. D.Maximum likelihood multidimensional scaling from directional rankings of similarities. Paper submitted for publication, 1980.

  • Jennrich, R. I., & Moore, R. H.Maximum likelihood estimation by means of nonlinear least squares (RB-75-7). Princeton, N.J.: Educational Testing Service, 1975.

    Google Scholar 

  • Takane, Y., & Carroll, J. D.On the robustness of AIC in the context of maximum likelihood multidimensional scaling. Manuscript in preparation.

  • Steiger, J. H., & Lind, J. M.Statistically based tests for the number of common factors. Handout for a paper presented at the Psychometric Society meeting, Iowa, 1980.

  • Krantz, D. H., & Tversky, A.Similarities of rectangles: An analysis of subjective dimensions. Ann Arbor, Mich.: Michigan Mathematical Psychology Program 73–8, 1973.

    Google Scholar 

  • Okada, A.Nonmetric multidimensional scaling and rating scales. San Diego, California: Proceedings of the U.S.-Japan Seminar on Theory, Methods and Applications of Multidimensional Scaling and Related Techniques, 1975, 141–150.

References

  • Akaike, H. Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.),The second international symposium on information theory. Budapest: Akadémiai Kiado, 1973.

    Google Scholar 

  • Akaike, H. A new look at the statistical model identification.IEEE Transactions on Automatic Control, 1974,19, 716–723.

    Google Scholar 

  • Akaike, H. On entropy maximization principle. P. R. Krishnaiah (Ed.).Applications of Statistics. Holland: North-Holland Publishing Co., 1977.

    Google Scholar 

  • Beck, J. V., & Arnold, K. J.Parameter estimation in engineering and science. New York: Wiley, 1977.

    Google Scholar 

  • Bentler, P. M., & Weeks, D. G. Restricted multidimensional scaling models.Journal of Mathematical Psychology, 1978,17, 138–151.

    Google Scholar 

  • Bloxom, B. Constrained multidimensional scaling inN spaces.Psychometrika, 1978,43, 397–408.

    Google Scholar 

  • Bock, R. D., & Jones, L. V.The measurement and prediction of judgment and choice. San Francisco: Holden Day, 1968.

    Google Scholar 

  • Carroll, J. D. Spatial, non-spatial and hybrid models of scaling.Psychometrika, 1976,41, 439–463.

    Google Scholar 

  • Green, P. E., & Rao, V. R. Rating scales and information recovery—how many scales and response categories to use.Journal of Marketing, 1970,34, 33–39.

    Google Scholar 

  • Hastings, C.Approximation for digital computers. Princeton, NJ: Princeton University Press, 1955.

    Google Scholar 

  • Johnson, S. C. Hierarchical clustering schemes.Psychometrika, 1967,32, 241–254.

    Google Scholar 

  • Kitagawa, G. On the use of AIC for the detection of outliers.Technometrics, 1979,21, 193–199.

    Google Scholar 

  • Krantz, D. H., & Tversky, A. Similarity of rectangles; An analysis of subjective dimensions.Journal of Mathematical Psychology, 1975,12, 4–34.

    Google Scholar 

  • Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 1964,29, 1–27.

    Google Scholar 

  • Kruskal, J. B. Nonmetric multidimensional scaling: A numerical method.Psychometrika, 1964,29, 115–129.

    Google Scholar 

  • Kruskal, J. B. & Wish, M.Multidimensional scaling. Beverly Hills, Calif.: Sage Publications, 1978.

    Google Scholar 

  • Lord, F. M., & Novick, M. R.Statistical theories of mental test scores. Reading, Massachusetts: Addison-Wesley, 1968.

    Google Scholar 

  • Messick, S. J. An empirical evaluation of multidimensional successive categories.Psychometrika, 1956,21, 367–375.

    Google Scholar 

  • Nakatani, L. H. Confusion-choice model for multidimensional psychophysics.Journal of Mathematical Psychology, 1972,9, 104–127.

    Google Scholar 

  • Ramsay, J. O. The effect of number of categories in rating scales on precision of estimation of scale values.Psychometrika, 1973,38, 513–532.

    Google Scholar 

  • Ramsay, J. O. Maximum likelihood estimation in multidimensional scaling.Psychometrika, 1977,42, 241–266.

    Google Scholar 

  • Ramsay, J. O. Confidence regions for multidimensional scaling analysis.Psychometrika, 1978,43, 145–160.

    Google Scholar 

  • Ramsay, J. O. Joint analysis of direct ratings, pairwise preferences and dissimilarities.Psychometrika, 1980a,45, 149–165.

    Google Scholar 

  • Ramsay, J. O. Some small sample results for maximum likelihood estimation in multidimensional scaling.Psychometrika, 1980b,45, 139–144.

    Google Scholar 

  • Rao, C. R.Advanced statistical methods in biometric research. New York: Wiley, 1952.

    Google Scholar 

  • Rothkopf, E. Z. A measure of stimulus similarity and errors in some paired associate learning.Journal of Experimental Psychology, 1957,53, 94–101.

    Google Scholar 

  • Sakamoto, Y. & Akaike, H. Analysis of cross classified data by AIC.Annals of the Institute of Statistical Mathematics, 1978,B30, 185–197.

    Google Scholar 

  • Schönemann, P. H. Similarity of rectangles.Journal of Mathematical Psychology, 1977,16, 161–165.

    Google Scholar 

  • Schönemann, P. H., & Tucker, L. R. A maximum likelihood solution for the method of successive intervals allowing for unequal stimulus dispersions.Psychometrika, 1967,32, 403–418.

    Google Scholar 

  • Schwartz, G. Estimating the dimensions of a model.The Annals of Statistics, 1978,6, 461–464.

    Google Scholar 

  • Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function, I & II.Psychometrika, 1962,27, 125–140, & 219–246.

    Google Scholar 

  • Shimizu, R. Entropy maximization principle and selection of the order of an autoregressive Gaussian process.Annals of the Institute of Statistical Mathematics, 1978,A30, 263–270.

    Google Scholar 

  • Takane, Y. A maximum likelihood method for nonmetric multidimensional scaling: I. The case in which all empirical pairwise orderings are independent—theory.Japanese Psychological Research, 1978a,20, 7–17.

    Google Scholar 

  • Takane, Y. A maximum likelihood method for nonmetric multidimensional scaling: II. The case in which all empirical pairwise orderings are independent—evaluations.Japanese Psychological Research, 1978b,20, 105–114.

    Google Scholar 

  • Thurstone, L. L.The measurement of values. Chicago, Ill.: University of Chicago Press, 1959.

    Google Scholar 

  • Torgerson, W. S. Multidimensional scaling: I. Theory and method.Psychometrika, 1952,17, 401–419.

    Google Scholar 

  • Torgerson, W. S.Theory and methods of scaling. New York: Wiley, 1958.

    Google Scholar 

  • Tversky, A. Features of similarity.Psychological Review, 1977,84, 327–352.

    Google Scholar 

  • Wilks, S. S.Mathematical statistics. New York: Wiley, 1962.

    Google Scholar 

  • Young, G., & Householder, A. S. Discussion of a set of points in terms of their mutual distances.Psychometrika, 1938,3, 19–22.

    Google Scholar 

  • Zinnes, J. L., & Wolff, R. P. Single and multidimensional same-different judgments.Journal of Mathematical Psychology, 1977,16, 30–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research reported here was partly supported by Grant A6394 to the author by Natural Sciences and Engineering Research Council of Canada. Portions of this research were presented at the Psychometric Society meeting in Uppsala, Sweden, in June, 1978. MAXSCAL-2.1, a program to perform the computations discussed in this paper may be obtained from the author. Thanks are due to Jim Ramsay for his helpful comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takane, Y. Multidimensional successive categories scaling: A maximum likelihood method. Psychometrika 46, 9–28 (1981). https://doi.org/10.1007/BF02293914

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02293914

Key words

Navigation