Skip to main content
Log in

Alternative test criteria in covariance structure analysis: A unified approach

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In the context of covariance structure analysis, a unified approach to the asymptotic theory of alternative test criteria for testing parametric restrictions is provided. The discussion develops within a general framework that distinguishes whether or not the fitting function is asymptotically optimal, and allows the null and alternative hypothesis to be only approximations of the true model. Also, the equivalent of the information matrix, and the asymptotic covariance matrix of the vector of summary statistics, are allowed to be singular. When the fitting function is not asymptotically optimal, test statistics which have asymptotically a chi-square distribution are developed as a natural generalization of more classical ones. Issues relevant for power analysis, and the asymptotic theory of a testing related statistic, are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison, J. (1962). Large-sample restricted parametric tests.Journal of the Royal Statistical Society, Series B, 24, 234–250.

    Google Scholar 

  • Bentler, P. M. (1983a). Simultaneous equations as moment structure models: With an introduction to latent variable models.Journal of Econometrics, 22, 13–42.

    Google Scholar 

  • Bentler, P. M. (1983b). Some contributions to efficient statistics in structural models: specification and estimation of moment structures.Psychometrika, 48, 493–517.

    Google Scholar 

  • Bentler, P. M. (1985).Theory and implementation of EQS, a structural equations program. Los Angeles: BMDP Statistical Software.

    Google Scholar 

  • Bentler, P. M. (1986).Lagrange multiplier and Wald tests for EQS and EQS/PC (Technical Report). Los Angeles: BMDP Statistical Software.

    Google Scholar 

  • Bentler, P. M., & Chou, C. P. (1986).Statistics for parameter expansion and constraction in structural models. Paper presented at the Annual Meeting of the American Educational Research Association, San Francisco.

  • Bentler, P. M., & Dijkstra, T. (1985). Efficient estimation via linearization in structural models. In P. R. Kirshnaiah (Ed.),Multivariate analysis VI (pp. 9–42), Amsterdam: North-Holland.

    Google Scholar 

  • Browne, M. W. (1974). Generalized least squares estimates in the analysis of covariance structures.South African Statistical Journal, 8, 1–24.

    Google Scholar 

  • Browne, M. W. (1982). Covariance structures. In D. M. Hawkins (Ed.),Topics in applied multivariate analysis (pp. 72–141). Cambridge: Cambridge University Press.

    Google Scholar 

  • Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures.British Journal of Mathematical and Statistical Psychology, 37, 62–83.

    Google Scholar 

  • Browne, M. W. (1987). Robustness of statistical inference in factor analysis and related models.Biometrika, 74, 375–84.

    Google Scholar 

  • Burguete, J. F., Gallant, A. R., & Souza, G. (1982). On unification of the asymptotic theory of nonlinear econometric models.Econometric Reviews, 1, 151–190.

    Google Scholar 

  • Buse, A. (1982). The likelihood ratio, Wald, and Lagrange multiplier tests: An expository note.The American Statistician, 36, 153–157.

    Google Scholar 

  • Chou, C. P., & Bentler, P. M. (1987).Model modification in covariance structure modeling: A comparison among likelihood ratio, lagrange multiplier and Wald tests. Paper presented at the Annual Meeting of the American Educational Research Association, Washington, D. C.

  • Cox, D. R., & Hinkley, D. V. (1974).Theoretical statistics. London: Chapman & Hall.

    Google Scholar 

  • Dijkstra, T. (1983). Some comments on maximum likelihood and partial least squares methods.Journal of Econometrics, 22, 67–90.

    Google Scholar 

  • Engle, R. F. (1984). Wald, likelihood ratio, and Lagrange multiplier test in econometrics. In Z. Griliches & M. Intriligator (Eds.),Handbook of Econometrics (pp. 775–825). Amsterdam: North-Holland.

    Google Scholar 

  • Ferguson, T. S. (1958). A method of generating best asymptotically normal estimates with application to the estimation of bacterial densities.Annals of Mathematical Statistics, 29, 1046–1062.

    Google Scholar 

  • Jennings, D. E. (1986), Judging inference adequacy in logistic regression.Journal of the American Statistical Association, 81, 471–476.

    Google Scholar 

  • Jöreskog, K. G. (1970). A general method for the analysis of covariance structures.Biometrika, 57, 239–251.

    Google Scholar 

  • Jöreskog, K. G. (1977).Structural equation models in the social sciences: Specification, estimation and testing. In P. R. Krishnaiah (Ed.), Application of statistics (p. 265–287). Amsterdam: North-Holland.

    Google Scholar 

  • Jöreskog, K. G. (1981). Analysis of covariance structures.Scandinavian Journal of Statistics, 8, 65–92.

    Google Scholar 

  • Jöreskog, K. G., & Sörbom, D. (1984).LISREL VI: Analysis of linear structural relationships by maximum likelihood, instrumental variables and least squares methods. Mooresville: Scientific Software.

    Google Scholar 

  • Lee, S.-Y. (1985). On testing functional constraints in structural equation models.Biometrika, 72, 125–131.

    Google Scholar 

  • Lee, S.-Y., & Bentler, P. M. (1980). Some asymptotic properties of constrained generalized least squares estimation in covariance structure models.South African Statistical Journal, 14, 121–136.

    Google Scholar 

  • Lee, S.-Y., & Tsui, K. L. (1982). Covariance structure analysis in several populations.Psychometrika, 47, 297–308.

    Google Scholar 

  • Luijben, T., Boomsma, A., & Molenaar, I. W. (1987).Modification of factor analysis models in covariance structure analysis: A monte study.Groningen:University of Groningen, Heymans Bulletins Psychologische Instituten.

    Google Scholar 

  • Lustbader, E. D., Moolgavkar, S. H. & Venzon, D. J. (1984). Tests of the null hypothesis in case-control studies.Biometrics, 40, 1017–1024.

    Google Scholar 

  • Rao, C. R. (1947). Large sample tests of statistical hypothesis concerning several parameters with applications to problems of estimation.Proceedings Cambridge Philosophy Society, 44, 50–57.

    Google Scholar 

  • Rao, C. R. (1965).Linear statistical inference and its applications. New York: John Wiley.

    Google Scholar 

  • Rao, C. R., & Mitra, S. K. (1971).Generalized inverse of matrices and its applications. New York: John Wiley.

    Google Scholar 

  • Saris, W. E., Satorra, A., & Sörbom, D. (1987). The detection and correction of specification errors in structural equation models. In C. C. Clogg (Ed.),Sociological methodology 1987 (pp. 105–129). Washington, D. C.: American Sociological Association.

    Google Scholar 

  • Saris, W. E., & Stronkhorst, L. H. (1984).Causal modeling in nonexperimental research: An introduction to the LISREL approach. Amsterdam: Sociometric Research Foundation.

    Google Scholar 

  • Satorra, A., & Bentler, P. M. (1988a).Scaling corrections for statistics on covariance structure analysis (UCLA Statistics Series #2). Los Angeles: University of California.

    Google Scholar 

  • Satorra, A., & Bentler, P. M. (1988b).Model conditions for asymptotic robustness in the analysis of linear relations (UCLA Statistic Series #4). Los Angeles: University of California.

    Google Scholar 

  • Satorra, A. & Saris, W. E. (1983). The accuracy of a procedure for calculating the power of the likelihood ratio test as used within the LISREL framework. In C. P. Middendorp, B. Niemöller & W. E. Saris (Eds.).Sociometric Research 1982 (pp. 127–190). Amsterdam: Sociometric Research Foundation.

    Google Scholar 

  • Satorra, A. & Saris, W. E. (1985). Power of the likelihood ratio test in covariance structure analysis.Psychometrika, 50, 83–90.

    Google Scholar 

  • Satorra, A., Saris, W. E., & de Pijper, W. M. (1987). A comparison of several approximations to the power of the likelihood ratio test in covariance structure analysis.American Statistical Association 1987 Proceedings, Business and Economic Statistics Section (pp. 393–398).

  • Serfling, R. J. (1980).Approximation theorems in mathematical statistics. New York: Wiley.

    Google Scholar 

  • Searle, S. R. (1982).Matrix algebra useful for statistics. New York: Wiley.

    Google Scholar 

  • Shapiro, A. (1983). Asymptotic distribution theory in the analysis of covariance structures (a unified approach).South African Statistical Journal, 17, 33–81.

    Google Scholar 

  • Shapiro, A. (1984). A note on the consistency of estimates in the analysis of moment structures.British Journal of Mathematical and Statistical Psychology, 37, 84–88.

    Google Scholar 

  • Shapiro, A. (1985a). Asymptotic equivalence of minimum discrepancy function estimators to G.L.S. estimators.South African Statistical Journal, 19, 73–81.

    Google Scholar 

  • Shapiro, A (1985b). Second-order derivatives of extremal-value functions and optimality conditions for semi-infinite programs.Mathematics of Operations Research, 10, 207–219.

    Google Scholar 

  • Shapiro, A. (1986). Asymptotic theory of overparameterized structural models.Journal of the American Statistical Association, 81, 142–149.

    Google Scholar 

  • Shapiro, A. (1987). Robustness properties of the MDF analysis of moment structures.South African Statistical Journal, 21, 39–62.

    Google Scholar 

  • Silvey, S. D. (1959). The Lagrangian multiplier test.Annals of Mathematical Statistics, 30, 389–407.

    Google Scholar 

  • Sörbom, D. (1986).Model modification (Research Report 86-3). Uppsala: University of Uppsala.

    Google Scholar 

  • Steiger, J. H., Shapiro, A., & Browne, M. W. (1985). On the multivariate asymptotic distribution of sequential chi-square statistics.Psychometrika, 50, 253–263.

    Google Scholar 

  • van Praag R. M. S., Dijkstra, T. K., & Van Velzen J. (1985). Least-squares theory based on general distributional assumptions with an application to the incomplete observations problem.Psychometrika, 50, 25–36.

    Google Scholar 

  • van Praag R.M.S., de Leeuw, J., & Kloek T. (1986). The population-sample decomposition approach to multivariate estimation methods.Applied Stochastic Models and Data Analysis, 2, 99–119.

    Google Scholar 

  • Wald, A. (1943). Tests of statistical hypothesis concerning several parameters when the number of observations is large.Transactions of the American Mathematical Society, 54, 426–482.

    Google Scholar 

  • White, H. (1982). Maximum likelihood estimation of misspecified models.Econometrica, 50, 1–25.

    Google Scholar 

  • Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses.Annals of Mathematical Statistics, 9, 60–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been supported by the U.S.-Spanish Joint Committee for Cultural and Educational Cooperation, grant number V-B.854020. The author wishes to express his gratitude to P. M. Bentler who provided very helpful suggestions and research facilities—with an stimulating working environment—at the University of California, Los Angeles, where this work was undertaken. Thanks are also due to W. E. Saris who provided very valuable comments to earlier versions of this paper. Finally, it has also to be acknowledged the editor's and reviewers suggestions which led to substantial improvements of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satorra, A. Alternative test criteria in covariance structure analysis: A unified approach. Psychometrika 54, 131–151 (1989). https://doi.org/10.1007/BF02294453

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294453

Key words

Navigation