Skip to main content
Log in

Solid state lithium ion conductors: Design considerations by thermodynamic approach

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The most common previously employed methods of designing useful solid state lithium ion conductors (SSLICs) are reviewed and a new approach for the rational design of advanced SSLICs is described, which makes use of thermodynamic considerations. The described method is based on the Gibbs energy of formation of binary compounds of substitutional or additional cations (including dopants) and is demonstrated by the improvement of the lithium ion conductivity of SSLICs having perovskite-, NASICON- and Li4SiO4-type structures. Dopant metal oxides with higher negative Gibbs energies of formation than that of the parent metal oxide increase commonly the lithium ion conduction. The stronger binding forces of the oxide ion with the dopant cation result in an electrostatic shielding of the attractive forces between the lithium ions and the anions which facilitates the ionic motion. Irrespective of the crystal structure, it is expected that this thermodynamic rule holds also for other mobile ionic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Robertson, A.R. West and A.G. Ritchie, Solid State Ionics104, 1 (1997).

    Article  CAS  Google Scholar 

  2. G. Adachi, N. Imanaka and H. Aono, Adv. Mater.8, 127 (1996).

    Article  CAS  Google Scholar 

  3. H. Aono, N. Imanaka and G. Adachi, Acc. Chem. Res.27, 265–270 (1991).

    Google Scholar 

  4. M. Greenblatt in Encyclopaedia of Inorganic Chemistry (R. B. King Ed), p1584. John Wiley, Chchester (1994).

    Google Scholar 

  5. S. Chandra, Superionic Solids: Principles and Applications, North Holland, Amsterdam, 1981.

    Google Scholar 

  6. T. Kudo in: The CRC Handbook of Solid State Electrochemistry (P.J. Gellings, H.J.M. Bouwmeester Eds), CRC press, London, p. 195, 1996.

    Google Scholar 

  7. J.T.S. Irvine and A.R. West in: High Conductivity Solid Ionic Conductors, Recent Trends and Applications (T. Takahashi, Ed), World Scientific, Singapore, p. 201, 1989.

    Google Scholar 

  8. J.R. Owen, Chemical Soc. Rev.26, 259 (1997).

    CAS  Google Scholar 

  9. D. Guyomard and J.M. Tarascon, Adv. Mater.6, 408 (1994).

    Article  CAS  Google Scholar 

  10. M. Winter, J.O. Besenhard, M.E. Spahr and P. Novak, Adv. Mater.10, 725 (1998).

    Article  CAS  Google Scholar 

  11. Handbook of Battery Materials, (J. O. Besenhard Ed), Wiley-VCH, Berlin, 1999.

    Google Scholar 

  12. Lithium Ion Batteries Fundamentals and Performance, (M. Wakihara and O. Yamamoto Eds), Wiley-VCH, Berlin, 1998.

    Google Scholar 

  13. Solid State Batteries: Materials Design and Optimization (C. Julien and G. A. Nazri, Eds), Kluwer Academic Publishers, Boston, 1994.

    Google Scholar 

  14. B. Ammundsen and J. Paulsen, Adv. Mater.13, 943 (2001).

    Article  CAS  Google Scholar 

  15. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, Mater. Res. Bull.15, 783 (1980).

    Article  CAS  Google Scholar 

  16. J.M. Tarascon, D. Guyomard, and G.L. Baker, J. Power Sources43–44, 689 (1993).

    Google Scholar 

  17. A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, J. Electrochem. Soc.144, 1188 (1997).

    CAS  Google Scholar 

  18. A. Yamada and S.C. Chung, J. Electrochem. Soc.148, 1188 (2001).

    Google Scholar 

  19. H. Hung, S.C. Yin and L.F. Nazar, Electrochemical and Sold State Letters4, A170 (2001).

  20. C. Julien in: The CRC Handbook of Solid State Electrochemistry (P.J. Gellings, H.J.M. Bouwmeester, Eds), CRC press, London, p. 371, 1996.

    Google Scholar 

  21. M. Winter, P. Novak and A. Monnier, J. Electrochem. Soc.145, 428 (1998).

    CAS  Google Scholar 

  22. R.A. Huggins, J. Power Sources81–82, 13 (1999).

    Google Scholar 

  23. A.R. West, Ber. Bunsenges. Phys. Chem.93, 1235 (1989).

    CAS  Google Scholar 

  24. P. Quinta, F. Velasco and A.R. West, Solid State Ionics34, 149 (1989).

    Google Scholar 

  25. A. Garcia, G. Torres-Trevino and A.R. West, Solid State Ionics40/41, 13 (1990).

    Article  Google Scholar 

  26. A.F. Wells, Structural Inorganic Chemistry, Fifth Edition, Clarendon Press, Oxford, 1984.

    Google Scholar 

  27. R.C. Evans, An Introduction to Crystal Chemistry, Cambridge University Press, Second Edition, Cambridge, 1964.

    Google Scholar 

  28. W. H. Flygare and R.A. Huggins, J. Phys. Chem. Solids34, 1199 (1973).

    CAS  Google Scholar 

  29. S. Geller, Acc. Chem. Res.11, 87 (1978).

    Article  CAS  Google Scholar 

  30. J.B. Goodenough, J.E. Ruiz-Diaz and Y.S. Zhen, Solid State Ionics44, 21 (1990).

    Article  CAS  Google Scholar 

  31. A. Rabenau and H. Schulz, J. Less Common Metals50, 155 (1976).

    CAS  Google Scholar 

  32. U. V. Alpen, A. Rabenau and G. H. Talat, J. Applied Physics Lett.,30, 621 (1977).

    Google Scholar 

  33. Y.F.Y. Yao and J.T. Kummer, J. Inorg. Nucl. Chem.29, 2453 (1967).

    CAS  Google Scholar 

  34. G. Farrington and J. I. Briant, Science204, 1371 (1979).

    CAS  Google Scholar 

  35. H. Y. P. Hong, Mater. Res. Bull.13, 117 (1978).

    CAS  Google Scholar 

  36. P. G. Bruce and A.R. West, J. Solid State Chem.44, 354 (1982).

    Article  CAS  Google Scholar 

  37. A.R. West, Z. Krist.141, 422 (1975).

    CAS  Google Scholar 

  38. H. Y. P. Hong, Mater. Res. Bull.11, 173 (1976).

    CAS  Google Scholar 

  39. J.B. Goodenough, H.Y.P. Hong and J.A. Kafalas, Mater. Res. Bull.11, 203 (1976).

    CAS  Google Scholar 

  40. A. Hono, N. Imanaka and G. Adachi, Acc. Chem. Res.27, 265 (1994).

    Google Scholar 

  41. H. Aono, E. Sugimoto, Y. Sadaoka and G. Adachi, J. Electrochem. Soc.136, 540 (1989).

    Google Scholar 

  42. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G. Adachi, J. Electrochem. Soc.137, 1023 (1990).

    CAS  Google Scholar 

  43. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G. Adachi, Solid State Ionics.62, 309 (1993).

    Article  CAS  Google Scholar 

  44. A.G. Belous, G.N. Novitskaya, S.V. Polanetskaya and Yu.I. Gorniov, Izv. Akad. Nauk SSSR, Neorg. Mater,23, 470 (1987).

    CAS  Google Scholar 

  45. Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta and M. Wahihara, Solid State Commun.86, 689 (1993).

    Article  CAS  Google Scholar 

  46. Y. Inaguma, L. Chen, M. Itoh and T. Nakamura, Solid State Ionics70/71, 196 (1994).

    Article  Google Scholar 

  47. M. Itoh, Y. Inaguma, N.H. Jung, L. Chen and T. Nakamuara, Solid State Ionics70/71, 203 (1994).

    Article  Google Scholar 

  48. H. Kawai and J. Kuwano, J. Electrochem. Soc.141, L78 (1994).

    Google Scholar 

  49. J.L. Fourquet, H. Duroy and M.P. Crosnier-Lopez, J. Solid State Chem.127, 283 (1996).

    Article  CAS  Google Scholar 

  50. J. Emery, J.Y. Buzare, O. Bohnke and J.L. Fourquet, Solid State Ionics99, 41 (1997).

    Article  CAS  Google Scholar 

  51. Y. Harada, T. Ishigaki, K. Kawai and J. Kuwano, Solid State Ionics108, 407 (1998).

    Article  CAS  Google Scholar 

  52. M.A. Paris, J. Sanz, C. Leon, J. Santamaria, J. Ibarra and A. Carez, Chem. Mater.12, 1694 (2000).

    Article  CAS  Google Scholar 

  53. O. Bohnke, C. Bohnke, J. O. S. Ahmed, M.P. Crosnier-Lopez, H. Duroy, F. Le Berre and J.L. Fourquet,13, 1593 (2001).

  54. J. Ibarra, A. Varez, C. Leon, J. Santamaria, L.M. Torres-Martinez and J. Sanz, Solid State Ionics134, 219 (2000).

    Article  CAS  Google Scholar 

  55. A.R. West in: Solid State Electrochemistry (P.G. Bruce, Ed), Cambridge University Press, Cambridge, London, 1995.

    Google Scholar 

  56. J.C. Boivin and G. Mairesse, Chem. Mater.10, 2870 (1998).

    Article  CAS  Google Scholar 

  57. H. Watanabe and J. Kuwano, J. Power Sources68, 421 (1997).

    CAS  Google Scholar 

  58. Y. Lawakami, H. Ikuta and M. Wakihara, J. Solid State Electrochem.2, 206 (1998).

    Google Scholar 

  59. K. Mizumoto and S. Hayashi, J. Ceramic Soc. Japan Int. Edition105, 767 (1997).

    Google Scholar 

  60. R.D. Shannon, Acta Crystallogr.A32, 751 (1976).

    CAS  Google Scholar 

  61. I. Barin, Thermochemical Data of Pure Substances, VCH Publication, New York, 1993.

    Google Scholar 

  62. Y. Harada, H. Watanabe, J. Kuwano and Y. Saito, J. Power Sources81–82, 777 (1999).

    Google Scholar 

  63. V. Thangadurai and W. Weppner, Ionics6, 70 (2000).

    Article  CAS  Google Scholar 

  64. Y. Saito, T. Asai, K. Ado, H. Kageyama and O. Nakamuara, Solid State Ionics40/41, 34 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thangadurai, V., Weppner, W. Solid state lithium ion conductors: Design considerations by thermodynamic approach. Ionics 8, 281–292 (2002). https://doi.org/10.1007/BF02376081

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02376081

Keywords

Navigation