Skip to main content
Log in

New intelligent polymer gels: a self-oscillating gel with pacemaking and actuating functions

  • Advanced Science for Artificial Organ Research: Review
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

We report an “intelligent” gel that undergoes autonomous swelling-deswelling oscillations without reliance on alterations in external conditions; this aspect reminds us of the heartbeat. The mechanical oscillation in our gel system was produced via an oscillating chemical reaction similar to a metabolic reaction, called the Belousov-Zhabotinsky (BZ) reaction. We have succeeded in synthesizing an ionic gel consisting of the cross-linkedN-isopropylacrylamide (NIPAAm) chain to which ruthenium tris(2,2′-bipyridine) [Ru(bpy)3] was covalently bonded. This Ru(bpy)3 complex acts as a catalyst for the BZ reaction; thus, the BZ reaction occurring within the gel matrix generates periodic redox changes of the catalyst moiety: Ru(bpy)3 2+⇆Ru(bpy)3 3+. This chemical oscillation is converted into the mechanical oscillation of the polymer network. As a result, the gel exhibits a periodic swelling-deswelling change. When the gel size is smaller than the chemical wavelength, the redox change occurs homogeneously in the gel. In this case, the volume change is isotropic and the gel beats as a whole, like a heart muscle cell. In the case of a large rectangular gel, the total length of the gel periodically changes with the propagation of chemical waves. The dynamic behavior that locally shrunken (or swollen) parts propagate is similar to the peristaltic motion observed in worms. This is the first study to achieve spontaneous volume oscillation of gels without external stimuli. Self-oscillation may be useful in a number of important applications to biomaterials, such as pulse generators or chemical pacemakers, self-walking actuators or micropumps with peristaltic motion, and devices for signal transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dusek K (ed) Responsive gels: volume transitions II. Berlin: Springer-Verlag, 1993

    Google Scholar 

  2. Tanaka T, Fillmore D, Sun ST, Nishio I, Swislow G, Shah A. Phase transition in ionic gels. Phys Rev Lett 1980;45:1636–1639

    Article  CAS  Google Scholar 

  3. Hirokawa Y, Tanaka T. Volume phase transition in a nonionic gel. J Chem Phys 1984;81:6379–6380

    Article  Google Scholar 

  4. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature 1995;374:240–242

    Article  CAS  Google Scholar 

  5. Kawasaki H, Sasaki S, Maeda H. Effect of pH on the volume phase transition of copolymer gels of N-isopropylacrylamide and sodium acrylate. J Chem Phys 1997;101:5089–5093

    CAS  Google Scholar 

  6. Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S. Collapse of gels in an electric field. Science 1982;218:467–469

    CAS  Google Scholar 

  7. Osada Y, Okuzaki H, Hori H. A polymer gel with electrically driven motility. Nature 1992;355:242–244

    Article  CAS  Google Scholar 

  8. Kokufuta E, Aman Y. A biochemo-mechanical system consisting of polymer gels with immobilized glucose dehydrogenase. Polym Gels Networks 1997;5:439–454

    Article  CAS  Google Scholar 

  9. Kanazawa H, Yamamoto K, Matsushima Y, Takai N, Kikuchi A, Sakurai Y, Okano T. Temperature-responsive chromatography using poly(N-isopropylacrylamide)-modified silica. Anal Chem 1996;68:100–105

    Article  CAS  Google Scholar 

  10. Matsukata M, Takei Y, Aoki T, Sanui K, Ogata N, Sakurai Y, Okano T. Temperature modulated solubility-activity alterations for poly(N-isopropylacrylamide)-lipase conjugates. J Biochem 1994;116:682–686

    PubMed  CAS  Google Scholar 

  11. Kikuchi A, Okuhara M, Karikusa F, Sakurai Y, Okano T. Two-dimensional manipulation of confluently cultured vascular endothelial cells using temperature-responsive poly(N-isopropylacrylamide)-grafted surfaces. J Biomater Sci Polym Edn 1998;9:1331–1348

    CAS  Google Scholar 

  12. Kokufuta E. Functional immobilized biocatalysts. Prog Polym Sci 1992;17:647–697

    Article  CAS  Google Scholar 

  13. Holtz JH, Asher SA. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 1997;389:829–832

    Article  PubMed  CAS  Google Scholar 

  14. Yoshida R, Sakai K, Okano T, Sakurai Y. Pulsatile drug delivery system using hydrogels. Adv Drug Deliv Rev 1993;11:85–108

    Article  CAS  Google Scholar 

  15. Okano T, Yui N, Yokoyama M, Yoshida R. Japanese technology reviews, section E: biotechnology, advances in polymeric systems for drug delivery. Yverdon: Gordon and Breach Science Publishers, 1994

    Google Scholar 

  16. Kiser PF, Wilson G, Needham D. A synthetic mimic of the secretory granule for drug delivery. Nature 1998;394:459–462

    Article  PubMed  CAS  Google Scholar 

  17. Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. Self-oscillating gel. J Am Chem Soc 1996;118:5134–5135

    Article  CAS  Google Scholar 

  18. Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. Self-oscillating gels. Adv Mater 1997;9:175–178

    Article  CAS  Google Scholar 

  19. Yoshida R, Yamaguchi T. Self-oscillation of polymer gels coupled with non-linear chemical reaction. In: Okano T (ed) Biorelated polymers and gels: controlled release and applications in biomedical engineering. Boston: Academic Press, 1998;71–91

    Google Scholar 

  20. Yoshida R, Takahashi T, Yamaguchi T, Ichijo H, Kokufuta E. Self-oscillation of polymer gels coupled with the Belousov-Zhabotinsky reaction. ACH Models in Chemistry 1998;135:409–416

    CAS  Google Scholar 

  21. Yoshida R, Kokufuta E, Yamaguchi T. Beating polymer gels coupled with a nonlinear chemical reaction. CHAOS 1999;9:260–266

    Article  PubMed  CAS  Google Scholar 

  22. Zaikin AN, Zhabotinsky AM. Concentration wave propagation in a two-dimensional, liquid-phase self-oscillating system. Nature 1970;225:535–537

    Article  PubMed  CAS  Google Scholar 

  23. Field RJ, Körös E, Noyes RM. Oscillations in chemical systems. II. Through analysis of temporal oscillations in the bromate-cerium-malonic acid system. J Am Chem Soc 1972;94:8649–8664

    Article  CAS  Google Scholar 

  24. Field RJ, Burger M (eds) Oscillations and traveling waves in chemical systems. New York: John Wiley & Sons, 1985

    Google Scholar 

  25. Chance B, Pye EK, Ghosh AK, Hess B (eds) Biological and biochemical oscillators. New York: Academic Press, 1973

    Google Scholar 

  26. Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, Pertsov AM. Mechanisms of cardiac fibrillation. Science 1995;270:1222–1225

    PubMed  CAS  Google Scholar 

  27. Winfree AT, Strogatz SH. Organizing centres for three-dimensional chemical waves. Nature 1984;311:611–615

    Article  PubMed  CAS  Google Scholar 

  28. Kondo S, Asai R. A reaction-diffusion wave on the skin of the marine angelfishPomacanthus. Nature 1995;376:765–768

    Article  CAS  Google Scholar 

  29. Castets V, Dulos E, Boissonade J, DeKepper P. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys Rev Lett 1990;64:2953–2956

    Article  PubMed  CAS  Google Scholar 

  30. Kuhnert L, Agladze KI, Krinsky VI. Image processing using light-sensitive chemical waves. Nature 1989;337:244–247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Yoshida PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, R., Yamaguchi, T. & Kokufuta, E. New intelligent polymer gels: a self-oscillating gel with pacemaking and actuating functions. J Artif Organs 2, 135–140 (1999). https://doi.org/10.1007/BF02480056

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480056

Key words

Navigation