Skip to main content
Log in

Design shear strength formula for high strength concrete beams

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

After a brief review on the concrete shear strength mechanisms, two very reliable expressions for predicting the shear strength of beams without transverse reinforcement are reported: the one proposed by Bažant and Kim [7], which is valid for Normal strength Concrete (NSC) beams, and the other recently proposed by the authors, which is valid for High Strength Concrete (HSC) beams. Hence a summary of a shear strength model for beams with stirrups is provided, which was derived [27] on the basis of the Bažant and Kim expression and therefore is adequate only for NSC beams.

On the basis of the expression obtained for HSC without stirrups and of the model already proposed for NSC with stirrups, a shear strength expression for HSC beams with stirrups is derived. The obtained expression is applied to an experimental program of 116 HSC beams with stirrups, and is found to predict the test results better than ACI Code [1], Eurocode [12] and CEB/FIP Model Code [9].

A design formula is hence proposed, which is adequately conservative and accurate.

A design example of a HSC beam with stirrups is carried out, and the various design expressions previously considered are compared.

Résumé

Après une brève revue des mécanismes de résistance au cisaillement, deux expressions très fiables prévoyant la résistance au cisaillement de poutres sans armure transversale sont rapportées: l'une proposée par Bažant et Kim [7], valable pour les poutres en béton ordinaire, l'autre récement proposée par les auteurs, valable pour les poutres en béton à haute performance. Le résumé d'un modèle de résistance au cisaillement est fourni pour les poutres avec arçons, déduit [27] à partir de l'expression de Bažant et Kim et donc adéquat seulement pour les poutres en béton ordinaire avec arçons.

En se basant sur l'expression obtenue pour les poutres en béton à hautes performances (BHP) sans arçons et sur le modèle déjà proposé pour les poutres en béton ordinaire avec arçons, on traouve une expression pour les poutres en BHP avec arçons. L'expression ainsi obtenue est appliquée à un échantillon expérimental de 116 poutres en BHP avec arçons, et s'avère plus apte à prévoir les résultats expérimentaux que le Code ACI [1], l'Eurocode [12], ou le code de référence CEB/FIP [9].

Il est donc proposé pour ce projet une expression à la fois traditionnelle et précise. Un exemple d'étude de poutre en BHP avec arçons est exposé et les différentes expressions déjà considérées pour le projet sont comparées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A s :

area of the longitudinal reinforcement

A v :

area of stirrups

C :

internal compression force

I b :

beam action index

I bc :

beam action index in critical conditions

M b :

beam action contribution to the ultimate bending moment

M c :

resisting bending moment

M FL :

pure flexure bending moment

M u :

ultimate bending moment in beams with stirrups

M uc :

ultimate bending moment in beams without stirrups

T :

tensile force in the longitudinal reinforcement

V a :

resultant of the aggregate interlocking stresses at the crack interface

V c :

shear force due to the concrete resisting contribution

V d :

shear force due to the dowel action

a :

shear span

(a/d) c :

critical value of the shear span to effective depth ratio

b :

beam width

c :

concrete cover

d :

beam effective depth

d a :

maximum aggregate size

f c :

concrete compressive cylindrical strength

f yl :

yielding strength of the longitudinal reinforcement

f yv :

yielding strength of the transverse reinforcement

h :

beam depth

j :

ratio between the internal lever arm and the beam effective depth

k, q :

coefficients

r :

coefficient which is the 0.05 fractile of the corresponding statistical distribution

s :

stirrups spacing

v s :

shear strength provided by stirrup

v si :

shear strength due to stirrups inclusion

v u :

shear strength of a beam with transverse reinforcement

v uc :

shear strength provided by concrete

x :

distance between the support and the transverse section at the ending point of the crack

ϕ:

angle between the diagonal compression strut and the beam longitudinal axis

ζ:

function taking into account the size effect

ρ:

longitudinal reinforcement percentage

ρ v :

geometrical percentage of the transverse reinforcement

ψ:

stirrup effectiveness function

meas :

measured

calc :

calculated

References

  1. ACI Committee 318, ‘Building Code Requirements for Structural Concrete and Commentary’, ACI 318-02/ACI 318R-02, American Concrete Institute, Detroit (2002) 443.

    Google Scholar 

  2. Adebar, P. and Collins, M.P., ‘Shear strength of members without transverse reinforcement’,Can. J. of Civil Engineering 23 (1) (1996) 30–41.

    Article  Google Scholar 

  3. Ahmad, S.H. and Barker, R., ‘Flexural behavior of reinforced high-strength lightweight concrete beams’,ACI Struct. J. 88 (1) (1991) 69–77.

    Google Scholar 

  4. Ahmad, S.H., and Lue, D.M., ‘Flexure-shear interaction of reinforced high-strength concrete beams.’ACI Struct. J. 84 (4) (1987) 330–341.

    Google Scholar 

  5. Ahmad, S.H., Khaloo, A.R., and Poveda, A., ‘Shear capacity of reinforced high-strength concrete beams.’ACI J., Proc. 83 (2) (1986) 297–305.

    Google Scholar 

  6. Angelakos, D., Bentz, E.C. and Collins, M.P., ‘Effect of concrete strength and minimum stirrups on shear strength of large members.’ACI Struct. J. 98 (3) (2001) 290–300.

    Google Scholar 

  7. Bažant, Z.P. and Kim, J.K., ‘Size effect in shear failure of longitudinally reinforced beams’,ACI Struct. J. 81 (5) (1984) 456–468.

    Google Scholar 

  8. Cladera, A. and Mari, A.R., ‘Shear strength of reinforced high-strength concrete beams’, 6th Int. Symp. on ‘Utilization of High Strength/High Performance Concrete’, Lipsia, Germany (Jun. 2002) 205–219.

  9. CEB/FIP Model Code 1990, First Draft, Chapters 6–14 and Appendices (1990).

  10. Collins, M.P. and Kuchma, D., ‘How safe are our large, lightly reinforced concrete beams, slabs and footings?’,ACI Struct. J. 96 (4) (1999) 482–490.

    Google Scholar 

  11. Elzanaty, A.H., Nilson, A.H. and Slate, F.O., ‘Shear capacity of reinforced concrete beams using high-strength concrete’.ACI Struct. J. 83 (2) (1986) 290–296.

    Google Scholar 

  12. ENV 1992-1-1. Comité Européen de normalisation CEN, ‘Eurocode 2—Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings’ (1992).

  13. Fenwick, R.C. and Paulay, T. Sr., ‘Mechanisms of shear resistance of concrete beams’,J. of Structural Division, ASCE 94 (10) (1968) 2325–2350.

    Google Scholar 

  14. Ganwei, C. and Nielsen, M.P., ‘Shear strength of beams of high-strength concrete’,Res. Rep., Department of Structural Engineering, Technical University of Denmark (Dan. Tek. Højsk. Afd. Bærende Konstr.), Ser R No. 258 (1990) 23.

    Google Scholar 

  15. Johnson, M.K. and Ramirez, J.A., ‘Minimum shear reinforcement in beams with higher strength concrete’,ACI Struct. J. 86 (4) (1989) 376–382.

    Google Scholar 

  16. Kani, G.N.J., ‘Riddle of shear failure and its solution’,ACI J. 61 (4) (1964) 441–467.

    Google Scholar 

  17. Kani, G.N.J., ‘Basic facts concerning shear failure’,ACI J. 63 (6) (1966) 675–692.

    Google Scholar 

  18. Kani, G.N.J., ‘A rational theory for the function of web reinforcement’,ACI J. 66 (3) (1969) 185–197.

    Google Scholar 

  19. Kim, J.K. and Park, Y.D., ‘Shear strength of reinforced high strength concrete beams without web reinforcement’,Mag. of Concrete Res. 46 (166) (1994) 7–16.

    Article  Google Scholar 

  20. Kong, P.Y.L. and Rangan, B.V., ‘Studies on shear strength of high performance concrete beams’, Res. Rep. of the School of Civil Engineering, Curtin University of Technology, Perth, Australia, 1998, 298.

    Google Scholar 

  21. Mansur, M.A., Chin, M.S. and Wee, T.H., ‘Flexural behavior of high-strength concrete beams’,ACI Struct. J. 94 (6) (1997) 663–674.

    Google Scholar 

  22. Mörsch, E., ‘Reinforced Concrete. Its Theory and Application’ (Wittwer, Stuttgart, 1908) [in German].

    Google Scholar 

  23. Mphonde, A.G. and Frantz, G.C., ‘Shear tests of high- and low-strength concrete beams without stirrups’,ACI J. 81 (4) (1984) 350–357.

    Google Scholar 

  24. Narayanan, R. and Darwish, I.Y.S., ‘Use of steel fibers as shear reinforcement’,ACI Struct. J. 84 (3) (1987) 216–227.

    Google Scholar 

  25. Park, R. and Paulay, T., ‘Reinforced Concrete Structures’ (John Wiley & Sons, New York, 1975) 769.

    Google Scholar 

  26. Pendyala, R.S. and Mendis, P., ‘Experimental study on shear strength of high-strength concrete beams’,ACI Struct. J. 97 (4) (2000) 564–571.

    Google Scholar 

  27. Russo, G. and Puleri, G., ‘Stirrup effectiveness in R.C. beams under flexure and shear’,ACI Struct. J. 94 (3) (1997) 576–584.

    Google Scholar 

  28. Russo, G. and Somma, G., ‘Shear strength of high performance concrete beams’, Safety of high performance concrete structures, National Project financially supported by the Ministry of University and Scientific Research (MURST)—1997-98 (1999) 89–93 [in Italian].

  29. Russo, G., Somma, G., Angeli, P. and Guerrini, G., ‘Shear strength analysis for normal and high-performance concrete beams’, 6th Int. Symp. on ‘Utilization of High Strength/High Performance Concrete’, Lipsia, Germany (June 2002) 553–567.

  30. Russo, G., Zingone, G. and Puleri, G., ‘Flexure-shear interaction model for longitudinally reinforced beams’,ACI Struct. J. 88 (1) (1991) 66–68.

    Google Scholar 

  31. Sarsam, K.F. and Al-Musawi, J.M.S., ‘Shear design of high and normal strength concrete beams with web reinforcement’,ACI Struct. J. 89 (6) (1992) 658–664.

    Google Scholar 

  32. Shin, S. W., Lee, K. S., Moon, J. and Ghosh, S. K., ‘Shear strength of reinforced high-strength concrete beams with shear span-to-depth ratios between 1.5 and 2.5’,ACI Struct. J. 96 (4) (1999) 549–556.

    Google Scholar 

  33. Somma, G. and Russo, G., ‘Shear tests of high-performance concrete beams without stirrups’, 7th Europ. Conf. on Advanced Mat. and Processes, Rimini, Italy, June 2001, 10.

  34. Tan, K.H., Teng, S., Kong, F.K. and Lu, H.Y., ‘Main tension steel in high strength concrete deep and short beams’,ACI Struct. J. 94 (6) (1997) 752–768.

    Google Scholar 

  35. Xie, Y., Ahmad, S.H., Yu, T., Hino, S. and Chung, W., ‘Shear ductility of reinforced concrete beams of normal and high-strength concrete’,ACI Struct. J. 91 (2) (1994) 140–149.

    Google Scholar 

  36. Yoon, Y., Cook, W.D. and Mitchell, D., ‘Minimum shear reinforcement in normal, medium and high-strength concrete beams’,ACI Struct. J. 93 (5) (1996) 576–584.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, G., Somma, G. & Angeli, P. Design shear strength formula for high strength concrete beams. Mat. Struct. 37, 680–688 (2004). https://doi.org/10.1007/BF02480513

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480513

Keywords

Navigation