Skip to main content
Log in

Mathematical model of cardiovascular mechanics for diagnostic analysis and treatment of heart failure: Part 1 model description and theoretical analysis

  • Modelling
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The planning of drug therapy for heart failure should involve both the diagnostic analysis of the patient’s defective state and a prediction of the drug effects on the identified state. We have devised a mathematical model of cardiovascular system mechanics, on which both quantitative diagnosis and evaluation of drug effects can be made. The model was composed of systemic and pulmonary circulatory networks including the dynamics of the left and right ventricles. The model of the ventricles can represent both systolic and diastolic problems in heart failure through the parameters of ventricular contractility and diastolic stiffness. Each vascular network was composed of arterial and venous resistances and total vascular capacitance. Patient’s ventricular and vascular parameters were estimated simultaneously from the clinically measurable haemodynamic variables based on the model. Despite the simplicity of the model, the results showed good agreement with clinical and experimental data. The clinically significant haemodynamic classification of heart failure by Forrester et al. (Forrester et al., 1977) was simulated well by the model. This model provides a useful basis for analysing pathophysiological states in heart failure and evaluating drug effects on the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amoore, J. N., andSantamore, W. P. (1989): ‘Model studies of the contribution of ventricular interdependence to the transient changes in ventricular function with respiratory efforts’,Cardiovasc. Res.23 pp. 683–94

    Google Scholar 

  • Avanzolini, G., Barbini, P., Cappello, A. andMassai, M. R. (1989): ‘Sensitivity analysis of the systemic circulation with a view to computer simulation and parameter estimation’,J. Biomed. Eng.,11, pp. 43–7

    Article  Google Scholar 

  • Barnea, O., Moore, T. W., andJaron, D. (1990): ‘Computer simulation of the mechanically-assisted failing canine circulation’,Ann. Biomed. Eng.18, pp. 263–83

    Article  Google Scholar 

  • Barnea, O., Moore, T. W., Dubin, S. E., andJaron, D. (1990): ‘Cardiac energy considerations during intraaortic balloon pumping’,IEEE Trans.,BME-37, pp. 170–81

    Google Scholar 

  • Berman, J., O’Benar, J. D., andBellamy, R. F. (1987): ‘A computer model of hemorrhagic shock in domestic swine’,Circ. Shock,21, pp. 85–96

    Google Scholar 

  • Beyar, R., andSideman, S. (1984): ‘A computer study of the left ventricular performance based on fiber structure, sarcomere dynamics, and transmural electrical propagation velocity’,Circ. Res.,55, pp. 358–75

    Google Scholar 

  • Beyar, R., andGoldstein, Y. (1987): ‘Model studies of the effects of the thoracic pressure on the circulation’,Ann. Biomed. Eng.,15, pp. 373–83

    Google Scholar 

  • Brodie, B. R., Grossman, W., Mann, T., andMcLaurin, P. (1977): ‘Effects of sodium nitroprusside on left ventricular diastolic pressure-volume relations’,J. Clin. Invest.,59, pp. 59–68

    Article  Google Scholar 

  • Burkhoff, D., Sugiura, S., David, T. Y., andSagawa, K. (1987): ‘Contractility-dependent curvilinearity of end-systolic pressure-volume relations’,Am. J. Physiol.,252, H1218–1227.

    Google Scholar 

  • Califf, R. M., Bounous, P., Harrel, F. E., McAnts, B., Lee, K. L., McKinnis, R. A., andRosati, R. A. (1982): ‘The prognosis in the presence of coronary artery disease’,inBraunwald, E., Mock, M. B., andWatson, J. (Eds.): ‘Congestive heart failure’ (New York and London, Grune & Stratton) pp. 31–40

    Google Scholar 

  • Carasso, S., Beyar, R., Rooke, A. G., andSideman, S. (1988): ‘Combining transmural left ventricular mechanics and energetics to predict oxygen demand’,Ann. Biomed. Eng.,16, pp. 495–513

    Article  Google Scholar 

  • Coleman, T. G. (1985): ‘Mathematical analysis of cardiovascular function’,IEEE Trans.,BME-32, pp. 289–294

    Google Scholar 

  • Dagan, J., andLevi, U. (1978): ‘The cardiovascular system simulated mathematically for normal and defective states’,T.-I.-T. J. Life Sci.,8, pp. 47–53

    Google Scholar 

  • Forrester, J. S., Diamond, G. A., andSwan, J. (1977): ‘Correlative classification of clinical and hemodynamic function after acute myocardial infarction’,Am. J. Cardiol.,39, pp. 137–145

    Article  Google Scholar 

  • Greenway, C. V. (1982): ‘Mechanisms and quantitative assessment of drug effects on cardiac output with a new model of the circulation’,Pharmacol. Rev.33, pp. 213–251

    Google Scholar 

  • Grossman, W. (1982): ‘Hemodynamic evaluation of congestive heart failure’inBraunwald, E., Mock, M. B., andWatson, J. (Eds.), ‘Congestive heart failure’, (New York and London, Grune & Stratton) pp. 167–178

    Google Scholar 

  • Guyton, A. C. (1963): ‘Venous return’inHamilton, W. F., andDow, P. (Eds.), ‘Handbook of physiology, Section 2: circulation’ (American Physiological Society, Washington) Vol. 2, pp. 1099–1133

    Google Scholar 

  • Guyton, A. C. (1980): ‘Circulatory physiology III: arterial pressure and hypertension’ (WB Saunders, Philadelphia)

    Google Scholar 

  • Haddy, F. J., andAlexander, R. S. (1971): ‘Compliance of the arteriovenous system: man and dog’inAltman, P. L. andDittmer, D. S. (Eds.): ‘Respiration and circulation’ (American Physiological Society, Bethesda, Maryland) pp. 391–395

    Google Scholar 

  • Herndon, C., andSagawa, K. (1969): ‘Combined effects of aortic and right atrial pressures on aortic flow’,Am. J. Physiol.,217, pp 65–72

    Google Scholar 

  • Hultgren, H. N., andFlamm, M. D. (1971): ‘Heart pressures: man’inAltman, P. L., andDittmer, D. S. (Eds.): ‘Respiration and circulation’ (American Physiological Society, Bethesda, Maryland) pp. 314–315

    Google Scholar 

  • Levy, M. N. (1979): ‘The cardiac and vascular factors that determine systemic blood flow’,Circ. Res.,44, pp. 739–746

    Google Scholar 

  • Lindsey, A. W., Banahan, B. F., Cannon, R. H., andGuyton, A. C. (1957): ‘Pulmonary blood volume of the dog and its changes in acute heart failure’,Am. J. Physiol.,190, pp. 45–48.

    Google Scholar 

  • Low, L. R., Windham, J. P., Farison, J. B., andPotvin, W. J. (1989): ‘Computer model for simulation of first transit cardiac radionuclide curves—I’,IEEE Trans.BME-36, pp. 935–45

    Google Scholar 

  • Maughan, W. L., Sunagawa, K., andSagawa, K. (1987): ‘Ventricular systolic interdependence: volume elastance model in isolated canine hearts’,Am. J. Physiol.253, H1381–1390

    Google Scholar 

  • Meador, S. A. (1986): ‘Computer simulation of cardiopulmonary resuscitation: computer analysis of a simple electrical model of the circulation’,Resusc.,13, pp. 145–57

    Article  Google Scholar 

  • Metcalfe, J., andHeinz, B. (1971): ‘Arterial and venous blood gas comparison: man’inAltman, P. L., andDittmer, D. S. (Eds.): ‘Respiration and circulation’ (American Physiological Society, Bethesda, Maryland) pp. 140–141

    Google Scholar 

  • Nose, Y., Tajimi, T., Watanabe, Y., Yokota, M., Akazawa, K. andNakamura, M. (1987): ‘A beat-to-beat calculator for the diastolic pressure time index and the tension time index’,Med. Inform.,12, pp. 223–30

    Google Scholar 

  • Permutt, S., BrombergerBarnea, B., andBane, H. N. (1962): ‘Alveolar pressure, pulmonary venous pressure, and the vascular waterfall’,Med. Thorac.,19, pp. 239–260

    Article  Google Scholar 

  • Peskin, C. S., andTu, C. (1986): ‘Hemodynamics in congenital heart disease’,Comput. Biol. Med.,16, pp. 331–59

    Article  Google Scholar 

  • Peterson, N. S., andCampbell, K. B. (1985): ‘Teaching cardiovascular integrations with computer laboratories’,Physiol.,28, pp. 159–69

    Google Scholar 

  • Pouleur, H., Covell, J. W., andRoss Jr.,J. (1980): ‘Effects of nitroprusside on venous return and central blood volume in the absence and presence of acute heart failure’,Circ.,61, pp. 328–337

    Google Scholar 

  • Sagawa, K. (1967): ‘Analysis of the ventricular pumping capacity as a function of input and output pressure loads’inReeve, E. B., andGuyton, A. C. (Eds.): ‘Physical bases of circulatory transport’ (WB Saunders, Philadelphia) pp. 141–149

    Google Scholar 

  • Sagawa, K., Suga, H., Shoukas, A. A., andBakalar, K. M. (1977): ‘End-systolic pressure/volume ratio: a new index of ventricular contractility’,Am. J. Cardiol.,40, pp. 748–753

    Article  Google Scholar 

  • Singer, R. B. (1971): ‘Blood gas variables, factors, and constants: man’inAltman, P. L., andDittmer, D. S. (Eds.): ‘Respiration and circulation’ (American Physiological Society, Bethesda, Maryland) pp. 139–140

    Google Scholar 

  • Specht, P. C. (1988): ‘Computer graphics interface to a complex simulation’,P. R. Health Sci. J.,7, pp. 184–8

    Google Scholar 

  • Suga, H., andSagawa, K. (1974): ‘Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle’,Circ. Res.,35, pp. 117–126

    Google Scholar 

  • Suga, H. (1979): ‘Driving energy of time-varying capacitance model of left ventricle and cardiac oxygen consumption’,Jpn. J. Med. Electron. Biol. Eng.,17, pp. 141–146

    Google Scholar 

  • Suga, H., Kitabatake, A., andSagawa, K. (1979): ‘End-systolic pressure determines stroke volume from fixed end-diastolic volume in the isolated canine left ventricle under a constant contractile state’,Circ. Res.,44, pp. 238–249

    Google Scholar 

  • Suga, H., Yasumura, Y., Nozawa, T., Futaki, S., Igarashi, Y., andGoto, Y. (1987): ‘Prospective prediction of O2 consumption from pressure-volume area in dog hearts’,Am. J. Physiol.,252, H1258–64

    Google Scholar 

  • Suga, H. (1990): ‘Ventricular energetics’,Physiol. Rev.,70, pp. 247–277

    Google Scholar 

  • Tsuruta, H., Sato, T., andIkeda, N. (1994): ‘Mathematical model of cardiovascular mechanics for diagnostic analysis and treatment of heart failure. Part 2: analysis of vasodilator therapy and planning of optimal drug therapy’,Med. Biol. Eng. Comput.,32, pp. 12–18

    Google Scholar 

  • Yu, C., Roy, R. J., andKaufman, H. (1990): ‘A circulatory model for combined nitroprusside-dopamine therapy in acute heart failure’,Med. Prog. Through Technol.,16, pp. 77–88

    Google Scholar 

  • Walker, J. R., andTraber, D. L. (1985): ‘A computer simulation of the interaction of drugs with cardiovascular reflexes’,Physiol.,28, pp. 454–5

    Google Scholar 

  • Watanabe, Y., Shimada, R., Nose, Y., Yokota, M., Inoue, T., andNakamura, M. (1985): ‘Computer analysis of left ventricular pressure-volume relationships by echocardiography’,Med. Inform.,10, pp. 249–58

    Article  Google Scholar 

  • Weber, K. T., andJanicki, J. S. (1977): ‘Instantaneous force-velocity-length relations: experimental findings and clinical correlates’,Am. J. Cardiol.,40, pp. 740–747

    Article  Google Scholar 

  • Weber, K. T., Janicki, J. S., andFishman, A. P. (1982): ‘Respiratory gas exchange during exercise in the noninvasive evaluation of the severity of chronic heart failure’inBraunwald, E., Mock, M. B., andWatson, J. (Eds.) ‘Congestive heart failure’ (New York and London, Grune & Stratton) pp. 221–236

    Google Scholar 

  • Weissler, A. M. (1971): ‘Systolic time intervals: man’inAltman, P. L., andDittmer, D. S. (Eds.) ‘Respiration and circulation’ (American Physiological Society, Bethesda, Maryland) p. 310

    Google Scholar 

  • Woodard, J. C., Farrar, D. J., Chow, E., Santamore, W. P., Burkhoff, D., andHill, J. D. (1989): ‘Computer model of ventricular interaction during left ventricular circulatory support’,ASAIO Trans.,35, pp. 439–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuruta, H., Sato, T., Shirataka, M. et al. Mathematical model of cardiovascular mechanics for diagnostic analysis and treatment of heart failure: Part 1 model description and theoretical analysis. Med. Biol. Eng. Comput. 32, 3–11 (1994). https://doi.org/10.1007/BF02512472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02512472

Keywords

Navigation