Skip to main content
Log in

Clustering criteria for discrete data and latent class models

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

We show that a well-known clustering criterion for discrete data, the information criterion, is closely related to the classification maximum likelihood criterion for the latent class model. This relation can be derived from the Bryant-Windham construction. Emphasis is placed on binary clustering criteria which are analyzed under the maximum likelihood approach for different multivariate Bernoulli mixtures. This alternative form of criterion reveals non-apparent aspects of clustering techniques. All the criteria discussed can be optimized with the alternating optimization algorithm. Some illustrative applications are included.

Résumé

Nous montrons que le critère de classification de l'information, souvent utilisé pour les données discrètes, est très lié au critère du maximum de vraisemblance classifiante appliqué au modèle des classes latentes. Ce lien peut être analysé sous l'approche de la paramétrisation de Bryant-Windham. L'accent est mis sur le cas des données binaires qui sont analysées sous l'approche du maximum de vraisemblance pour les mélanges de distributions multivariées de Bernoulli. Cette forme de critère permet de mettre en évidence des aspects cachés des méthodes de classification de données binaires. Tous les critères envisagés ici peuvent être optimisés avec l'algorithme d'optimisation alternée. Des exemples concluent cet article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AITCHISON, J., and AITKEN, C. G. G. (1976), “Multivariate Binary Discrimination by the Kernel method,”Biometrika, 63, 413–420.

    Article  MATH  MathSciNet  Google Scholar 

  • BENZÉCRI, J. P. (1973), “Théorie de l'Information et Classification d'après un Tableau de Contingence,”L'Analyse des Données, tome 1, Paris: Dunod, 207–236.

    Google Scholar 

  • BEZDEK, J. C., HATHAWAY, R. J., HOWARD, R. E., WILSON, C. A., and WINDHAM, M. P. (1987), “Local Convergence Analysis of a Grouped Variable Version of Coordinate Descent,”Journal of Optimization and Applications, 54, 471–477.

    Article  MATH  MathSciNet  Google Scholar 

  • BOCK, H. H. (1986), “Loglinear Models and Entropy Clustering Methods for Qualitative Data,” inClassification as a Tool of Research, Eds., W. Gaul and M. Schader, Amsterdam: North-Holland, 19–26.

    Google Scholar 

  • BOCK, H. H. (1989), “Probabilistic Aspects in Cluster Analysis,” inConceptual and Numerical Analysis of Data, Ed., O. Opitz, Berlin: Springer-Verlag 12–44.

    Google Scholar 

  • BOZDOGAN H. (1987), “Selecting Loglinear Models and Subset Selection of Variables in Multiway Contingency Tables using Akaike's Information Criterion,” inClassification and Related Methods of Data Analysis, Ed., H. H. Bock, Amsterdam: North-Holland, 609–616.

    Google Scholar 

  • BRYANT, P. (1988), “On Characterizing Optimization-Based Clustering Methods,”Journal of Classification, 5, 81–84.

    Article  MathSciNet  Google Scholar 

  • BRYANT, P., and WILLIAMSON, J. A. (1978), “Asymptotic Behaviour of Classification Maximum Likelihood Estimates,”Biometrika, 65, 273–281.

    Article  MATH  Google Scholar 

  • BRYANT, P., and WILLIAMSON, J. A. (1986), “Maximum Likelihood and Classification: A Comparison of Three Approaches,” inClassification as a Tool of Research, Eds., W. Gaul and M. Schader, Amsterdam: North-Holland, 33–45.

    Google Scholar 

  • CELEUX, G. (1988), “Classification et Modèles,”Revue de Statistique Appliquée, 36, 4, 43–58.

    MATH  MathSciNet  Google Scholar 

  • DEMPSTER, A. P., LAIRD, N. M., and RUBIN, D. B. (1977), “Maximum Likelihood from Incomplete Data via the EM Algorithm (with discussion),”Journal of the Royal Statistical Society, B 39, 1–38.

    MATH  MathSciNet  Google Scholar 

  • DIDAY, E., and SIMON J. C. (1976), “Clustering Analysis,” inDigital Pattern, Recognition, Ed., K. S. Fu, Berlin: Springer-Verlag, 47–94.

    Google Scholar 

  • EVERITT, B. (1984),An Introduction to Latent Variable Models, London: Chapman and Hall.

    MATH  Google Scholar 

  • GANESALINGAM S. (1989), “Classification and Mixture Approach to Clustering via Maximum Likelihood,”Applied Statistics, 38, 455–466.

    Article  MATH  MathSciNet  Google Scholar 

  • GOODMAN, L. A. (1974), “Exploratory Latent Structure Models using both Identifiable and Unidentifiable Models,”Biometrika, 61, 215–231.

    Article  MATH  MathSciNet  Google Scholar 

  • GOVAERT, G. (1983),Classification Croisée, Thesis Université Paris 6.

  • MARRIOTT, F. H. C. (1975), “Separating Mixtures of Normal Distributions,”Biometrics, 31, 767–769.

    Article  MATH  Google Scholar 

  • SCOTT, A. J., and SYMONS, M. J. (1971), “Clustering Methods Based on Likelihood Ratio Criteria,”Biometrics, 27, 387–397.

    Article  Google Scholar 

  • STOUFFER, S. A., and TOBY, J. (1951), “Role Conflict and Personality,”American Journal of Sociology, 56, 395–406.

    Article  Google Scholar 

  • WINDHAM, M. P. (1987), “Parameter Modification for Clustering,”Journal of Classification, 4, 191–214.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celeux, G., Govaert, G. Clustering criteria for discrete data and latent class models. Journal of Classification 8, 157–176 (1991). https://doi.org/10.1007/BF02616237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02616237

Keywords

Navigation