Skip to main content
Log in

Activities in liquid Fe-V-O and Fe-B-O alloys

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The activities in liquid Fe-V-0 and Fe-B-O alloys have been determined using the following galvanic cells Cr-Cr2O3(s) | ZrO2(CaO) | Fe-V-O (l, saturated with oxide) Cr-Cr2O3(s) | ThO2(Y2O3) | Fe-V-O (l, saturated with oxide) Cr-Cr2O3(s) | ZrO2(CaO) | Fe-B-O (l, B2O3 saturated with Al2O3) The solubility of oxygen in Fe-V alloys at 1600°C decreases with increasing vanadium content to a minimum of about 180 ppm at 3 wt pct V, and then increases to over 4000 ppm at 36.3 wt pct V. Vanadium was found to decrease the activity coefficient of oxygen and the value of the interaction coefficient eo V at infinite dilution of vanadium is -0.14. The activity of vanadium was calculated from the measured electromotive force, and log γv was found to be represented well by the quadratic formalism for Nv < 0.4: log γV = -0.70N 2 Fe -0.30 At 1550°C boron decreases the solubility of oxygen down to about 80 ppm at 0.67 wt pct B in Fe-B melts in equilibrium with B2O3 saturated with A12O3 (NAl 2 O3 = 0.087). The boron deoxidation product, ’K′ = (wt pct B)2(wt pct 0)3 at infinite dilution of boron is 4.4 × 10-9 and 1.5 × 10-8 at 1550° and 1600°C, respectively. Boron decreases the activity coefficient of oxygen in liquid iron, and the value of the interaction coefficient eo B is -2.6 at infinite dilution of boron. The activity coefficient of boron at infinite dilution (γ° B) is 0.083 at 1550°C relative to solid boron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dastur and J. Chipman:AIME Trans., 1951, vol. 191, pp. 111–15.

    Google Scholar 

  2. H. Schenck and E. Steinmetz:Arch. Eisenhuettenw., 1967, vol. 38, pp. 871–74.

    CAS  Google Scholar 

  3. J. K. Pargeter:Can. Met. Quart., 1967, vol. 6, pp. 21–36.

    CAS  Google Scholar 

  4. W. A. Fischer and M. Haussmann:Arch. Eisenhuettenw., 1966, vol. 36, pp. 959–61.

    Google Scholar 

  5. G. Derge:AIME Trans., 1946, vol. 167, pp. 93–107.

    Google Scholar 

  6. R. J. Fruehan, L. J. Martonik, and E. T. Turkdogan:Trans. TMS-AIME, 1969, vol. 245, pp. 1501–10.

    CAS  Google Scholar 

  7. J. F. Elliott, M. Gleiser, and V. Ramakrishma:Thermochemistry for Steelmaking, Vol. II, Addison-Wesley, 1963.

  8. Basic Open Hearth Steelmaking, AIME, 1964.

  9. R. J. Fruehan:Met. Trans., 1970, vol. 1, pp. 865–70.

    CAS  Google Scholar 

  10. R. J. Fruehan:Trans. TMS-AIME, 1969, vol. 245, pp. 1215–18.

    CAS  Google Scholar 

  11. E. M. Levin, C. R. Robbins, and H. F. McMurdie:Phase Diagrams for Ceramists, The American Ceramic Society, 1964.

  12. P. J. Gielisse and W. R. Foster:Nature, 1962, vol. 195, pp. 69–70.

    Article  CAS  Google Scholar 

  13. C. H. P. Lupis and J.F. Elliott:Acta Met., 1966, vol. 14,pp. 529–38.

    Article  CAS  Google Scholar 

  14. L. S. Darken:Trans. TMS-AIME, 1967, vol. 239,pp. 80–89.

    CAS  Google Scholar 

  15. L. S. Darken:Trans. TMS-AIME, 1967, vol. 239, pp. 90–96.

    CAS  Google Scholar 

  16. R. Hultgren, R. Orr, P. Anderson, and K. Kelley:Selected Values of Thermodynamic Properties of Metals and Alloys, J. Wiley & Sons, New York, 1963.

    Google Scholar 

  17. K. Myles and A.T. Aldred:J. Phys. Chem., 1964, vol. 68, pp. 64–69.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fruehan, R.J. Activities in liquid Fe-V-O and Fe-B-O alloys. Metall Trans 1, 2083–2088 (1970). https://doi.org/10.1007/BF02643418

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643418

Keywords

Navigation