Skip to main content
Log in

The temperature independent plateau stress of solid solution crystals

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

A calculation of the plateau stress in solid solution crystals is presented assuming an arbitrarily oriented dislocation loop of lengthL, that moves under an applied stress. At high concentrations of solute atoms the dislocation segment does not interact with an individual solute atom but instead with all the solute atoms along the dislocation segment within a certain radius. The macroscopic flow stress is assumed to be determined by the maximum force that is encountered when a dislocation is moved over a distance equal to the distance between the position at zero stress and the critical position of an activated Frank-Read source. If the dislocation segment is assumed to be large compared to atomic distances, the interaction with groups of atoms will lead to an athermal process and therefore can explain the origin of the temperature independent flow stress in solid solution crystals. From this model the flow stress can be calculated with the help of statistical methods similar to those used in calculations of the movement of Bloch walls in magnetic materials. Besides the proper temperature dependence of the plateau stress the above model yields a dependence of the plateau stress upon the square root of the solute concentration, a result that is in good agreement with the measurements on silver, gold, and copperbased alloys. A linear relation between the solid solution hardening parameter dT/d√c and the strength of the solute atoms is obtained which is confirmed by the experimental results on copper-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Seeger:Phil. Mag., 1955, vol. 46, pp. 1194–1217.

    Article  Google Scholar 

  2. A. Seeger:Kristallplastizität Handb. d Physik, p. 171, vol. VIIJ2, Springer-verlag, Berlin, 1958.

    Google Scholar 

  3. P. Haasen:Z. Metallic., 1964, vol. 55, pp. 55–60.

    Google Scholar 

  4. P. Haasen:Physical Metallurgy, R. W. Cahn, ed., p. 821, John Wiley and Sons, Inc., New York, 1965.

    Google Scholar 

  5. W. Frank:Z. Naturforsch., 1967, vol. 22a, pp. 365–76.

    Google Scholar 

  6. W. Frank:Phys. Status Solidi, 1967, vol. 19, pp. 239–50.

    Article  Google Scholar 

  7. O. Boser:The Interactions Between Dislocations and Point Defects, AERE-R 5944, 1968, vol. 13, pp. 693–715, Atomic Energy Research Establishment, Harwell, Berkshire.

    Google Scholar 

  8. O. Boser: GTE Labs., Bayside, New York, unpublished research, 1970.

  9. C. Zener:AIME Trans., 1943, vol. 152, pp. 122–26.

    Google Scholar 

  10. A. S. Nowick and D. P. Seraphim:ActaMet., 1961, vol. 9, pp. 40–48.

    Google Scholar 

  11. C. Y. Li and A. S. Nowick:ActaMet., 1961, vol. 9, pp. 49–58.

    Google Scholar 

  12. D. P. Seraphim and A. S. Nowick:ActaMet., 1961, vol. 9, pp. 85–97.

    Google Scholar 

  13. R. L. Fleischer:The Strengthening of Metals, D. Pecker, ed., p. 93, Reinhold Publishing Company, N. Y., 1964.

    Google Scholar 

  14. A. J. E. Foreman and M. J. Makin:Phil. Mag., 1966, vol. 14, pp. 911–24.

    Article  Google Scholar 

  15. A. J. E. Foreman:Phil. Mag., 1967, vol. 15, pp. 1011–21.

    Article  Google Scholar 

  16. U. F. Kocks:Phil. Mag., 1966, vol. 13, pp. 541–66.

    Article  Google Scholar 

  17. U. F. Kocks:Acta Met, 1966, vol. 14, pp. 1629–31.

    Article  Google Scholar 

  18. U. F. Kocks:Can. J. Phys., 1967, vol. 45, pp. 737–55.

    Article  Google Scholar 

  19. N. F. Mott and F. R. N. Nabarro:Report on Strength of Solids, p.l, The Physical Society, London, 1948.

    Google Scholar 

  20. N. F. Mott:Imperfections in Nearly Perfect Crystals, pp. 173–96, John Wiley and Sons, New York, 1952.

    Google Scholar 

  21. J. Friedel:Les Dislocations, p. 379, Gauthier-Villars, Paris, 1956.

    Google Scholar 

  22. J. Friedel:Electron Microscopy and Strength of Crystals, p. 605, Interscience, New York, 1963.

    Google Scholar 

  23. R. L. Fleischer:,Acta Met., 1963, vol. 11, pp. 203–09.

    Article  Google Scholar 

  24. T. Suzuki:Dislocation Dynamics, p. 551, McGraw-Hill Book Co., New York, 1968.

    Google Scholar 

  25. W. Hume-Rothery:Elements of Structural Metallurgy, p. 107, Institute of Metals, 1961.

  26. A. H. Cottrell:Dislocations and Plastic Flow in Crystals, p. 129, Clarendon Press, Oxford, 1953.

    Google Scholar 

  27. J. W. Christian:The Interactions Between Dislocations and Point Defects, B. L. Eyre, ed., 1968, vol. III AERE-R 5644, H.M.S.O. Harwell, p. 604.

  28. E. Orowan:Symp. on Internal Stresses in Metals and Alloys, pp. 47–59, Inst. of Metals, London, 1948.

    Google Scholar 

  29. E. Orowan:Dislocations in Metals, p. 37, AIME, New York, 1954.

    Google Scholar 

  30. B. R. Riddhagni and R. M. Asimow:J. Appl. Phys., 1968, vol. 39, pp. 4144–51.

    Article  Google Scholar 

  31. B. R. Riddhagni and R. M. Asimow:J. Appl. Phys., 1968, vol. 39, pp. 5169–73.

    Article  Google Scholar 

  32. R. Labusch:Phys. Status Solidi, 1970, vol. 41, pp. 659–69.

    Article  Google Scholar 

  33. T. Stefansky and B. E. Dorn:Trans. TMS-AIME, 1969, vol. 245, pp. 1869–76.

    Google Scholar 

  34. L. Johnson and M. F. Ashby:Acta Met, 1968, vol. 16, pp. 219–25.

    Article  Google Scholar 

  35. M. Peach and J. S. Koehler:Phys. Rev., 1959, vol. 80, pp. 436–39.

    Article  Google Scholar 

  36. H. Träuble:Mod. Probl. Metallphys., 1966, vol. 2, p. 332.

    Google Scholar 

  37. H. Träuble, H. Kronmuller, A. Seeger, and O. Boser:Mater. Sci. Eng., 1966, vol. l,pp. 167–76.

    Article  Google Scholar 

  38. H. Bilger and H. Träuble:Phys. Status Solidi, 1965, vol. 10, pp. 755–64.

    Article  Google Scholar 

  39. B. V. Gnedenko and A. N. Kolmogorov: p. 1, Addison-Wesley Publ. Corp., Reading, Mass., 1968.

  40. W. Feller:An Introduction to Probability Theory and Its Applications, vol. 1, p. 43, John Wiley and Sons, Inc., New York, 1966.

    Google Scholar 

  41. H. Cramer: Mathematical Methods of Statistics, p. 370, Princeton Univ. Press, Princeton, 1958.

    Google Scholar 

  42. P. Jax, P. Kratochvil, and P. Haasen:Acta Met, 1970, vol. 18, pp. 237–45.

    Article  Google Scholar 

  43. G. Kostorz and P. Haasen:Z. Metallk., 1969, vol. 60, pp. 26–28.

    Google Scholar 

  44. P. Haasen:Dislocation Dynamics, A. R. Rosenfield, G. T. Hahn, A. L. Bernent, and R. I. Jaffe, eds., p. 570, McGraw-Hill Book Co., New York, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boser, O. The temperature independent plateau stress of solid solution crystals. Metall Trans 3, 843–849 (1972). https://doi.org/10.1007/BF02647658

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647658

Keywords

Navigation