Skip to main content
Log in

Microstructural stability on aging of an α + β titanium alloy: ti- 6ai- 1.6zr-3.3mo- 0.30si

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The development of the microstructure on aging of an (α + β) type titanium alloy containing 6A1-1.6Zr-3.3Mo-0.3Si (VT9) (in weight percent) has been studied. The β-transus temperature of this alloy is approximately 1243 K. Solution treatment in the β-phase field of the alloy followed by quenching in water at room temperature resulted in the formation of a single-phase martensite struc-ture. The martensitic structure was confirmed to be orthorhombic (α″) using X-ray diffraction. The water-quenched (WQ) specimens were subjected to aging treatments at temperatures of 823, 873, and 973 K for various lengths of time. Aging at 823 K for times between 24 and 100 hours did not bring about any noticeable change in the microstructure. Aging at 823 K for 200 and 300 hours resulted in the heterogeneous precipitation ofs 2 silicide particles and thin films of β sandwiched between the interplatelet boundaries of martensite. Electron diffraction analysis confirms that the crystal structure of silicide particles is hexagonal with lattice parameters α= 0.70(1) nm andc = 0.36(8) nm. Aging at 873 K for 12 and 24 hours resulted only in the precipitation ofs 2 silicide particles, while aging at the same temperatures for longer times (48, 100, and 200 hours) and also at 973 K for 6 to 100 hours resulted in the precipitation of silicides and also thin films of β and acicular martensite. The relative sizes of silicide precipitates and width of thin films of β phase increase with increasing aging time. The sites for silicide precipitation are mainly at α′-α′ boundaries, α interfaces, and sometimes within regions of transformed β. The kinetics ofs 2 silicide precipi-tation in this alloy is faster than in commercial near-α titanium alloys. This is attributed to the presence of Mo, a strong β stabilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Eylon, S. Fujishiro, P.J. Postans, and F.H. Froes:J. Met, 1984, vol. 1, pp. 55–62.

    Google Scholar 

  2. M. Kehoe and R.W. Broomfield:Defence Sci. J., 1986, vol. 36 (4), p. 2167.

    Google Scholar 

  3. M.R. Winstone, R.D. Rawlings, and D.R.F. West:J. Less-Common Met, 1975, vol. 37, pp. 205–17.

    Article  Google Scholar 

  4. Y. Imbert:J. Less-Common Met, 1974, vol. 37, pp. 71–89.

    Article  CAS  Google Scholar 

  5. W. Cho, J.W. Jones, J.E. Allison, and W.T. Donlon:Proc. 6th World Conf. on Titanium, Les Editions de Physique, Paris, 1988, vol. 1, pp. 187–92.

    Google Scholar 

  6. H.M. Flower, P.R. Swann, and D.R.F. West:Metall. Trans., 1971, vol. 2, pp. 3289–97.

    CAS  Google Scholar 

  7. A.T.K. Assadi, H.M. Flower, and D.R.F. West:Met. Technol. 1979, Jan., pp. 8–15.

  8. H.M. Flower, K. Lipscombe, and D.R.F. West:J. Mater. Sci., 1982, vol. 17, pp. 1221–31.

    Article  CAS  Google Scholar 

  9. C. Ramachandra and V. Singh:J. Mater. Sci., 1988, vol. 23, pp. 835- 41.

    Article  Google Scholar 

  10. G. Sridhar and D.S. Sarma:Metall. Trans. A, 1989, vol. 20A, pp. 55- 62.

    Google Scholar 

  11. D. Banerjee, J.E. Allison, F.H. Froes, and J.C. Williams: inTitanium Science and Technology, G. Lutjering, U. Zwicker, and W. Bunk, eds., DGM, 1985, vol. 3, pp. 1519-26.

  12. A.P. Woodfield, P.J. Postans, M.H. Loretta, and R.E. Smallman:Acta Metall, 1988, vol. 36, pp. 507–15.

    Article  CAS  Google Scholar 

  13. C. Ramachandra and V. Singh:Scripta Metall., 1987, vol. 21, pp. 633–36.

    Article  CAS  Google Scholar 

  14. C. Ramachandra, V.K. Verma, and V. Singh:Int. J. Fatigue, 1988, vol. 10, pp. 21–26.

    Article  CAS  Google Scholar 

  15. WJ. Plumbridge and M. Stanley:Int. J. Fatigue, 1986, vol. 8, pp. 209–16.

    Article  CAS  Google Scholar 

  16. K.C. Antony:Trans. TMS-AIME, 1968, vol. 242, pp. 1454–56.

    CAS  Google Scholar 

  17. P.C. Kotval and R.W. Calder:Metall. Trans., 1972, vol. 3, pp. 1308- 11.

    Article  Google Scholar 

  18. F. Barbier, C. Servant, C. Quesne, and P. Lacombe:J. Microsc. Spectrosc. Electron, 1981, vol. 6, pp. 299–310.

    CAS  Google Scholar 

  19. F.A. Crossley and D.H. Turner:Trans. TMS-AIME, 1958, vol. 212, p. 60.

    CAS  Google Scholar 

  20. C. Ramachandra and V. Singh:Metall. Trans. A, 1982, vol. 13A, pp. 771–75.

    Google Scholar 

  21. C. Ramachandra, A.K.. Singh, and G.M.K. Sarma:Metall. Trans. A, 1993, vol. 24A, pp. 1273–80.

    CAS  Google Scholar 

  22. C. Ramachandra and V. Singh:Scripta Metall, 1986, vol. 20, pp. 509- 12.

    Google Scholar 

  23. D. Banerjee, D. Mukherjee, R.L. Saha, and K. Bose:Metall. Trans. A, 1983, vol. 14A, pp. 413–20.

    Google Scholar 

  24. A.K. Singh, C. Ramachandra, M. Tavafoghi, and V. Singh:J. Alloys Compounds, 1992, vol. 179, pp. 125–35.

    Article  CAS  Google Scholar 

  25. A.K. Singh, C. Ramachandra, M. Tavafoghi, and V. Singh:J. Mater. Sci. Lett, 1993, vol. 12, pp. 697–99.

    Article  CAS  Google Scholar 

  26. CF. Yolton, F.H. Froes, and R.F. Malone:Metall. Trans. A, 1979, vol. 10A, pp. 132–34.

    CAS  Google Scholar 

  27. T.J. Headly and H.J. Rack:Metall. Trans. A, 1979, vol. 10A, pp. 909- 20.

    Google Scholar 

  28. D. Banerjee and J.C. Williams:Scripta Metall, 1983, vol. 17, pp. 1125–28.

    Article  CAS  Google Scholar 

  29. D. Banerjee, C.G. Shelton, B. Ralph, and J.C. Williams:Acta Metall, 1988, vol. 36(1), pp. 125–41.

    Article  CAS  Google Scholar 

  30. C. Servant, C. Quesne, T. Baudin, and R. Penelle:J. Mater. Res., 1991, vol. 6 (5), pp. 987–98.

    CAS  Google Scholar 

  31. F. Cortial:Metall. Trans. A, 1994, vol. 25A, pp. 241–48.

    Article  CAS  Google Scholar 

  32. N.E. Paton and H.L. Fraser:Proc. 6th World Conf. on Titanium, Les Editions de Physique, Paris, 1988, vol. 3, pp. 1469–79.

    Google Scholar 

  33. T.T. Ye and H. Ling:Scripta Metall, 1989, vol. 23, pp. 1755–59.

    Article  CAS  Google Scholar 

  34. C.E. Shamblen:Metall. Trans., 1972, vol. 3, pp. 1299–1305.

    Article  CAS  Google Scholar 

  35. M. Young, E. Levine, and H. Margolin:Metall. Trans. A, 1979, vol. 10A, pp. 359–65.

    CAS  Google Scholar 

  36. T. Sujimoto, Shinya Komatru, and Kizoshi Kamei:Titanium 80, Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, New York, NY, 1980, pp. 2981–90.

    Google Scholar 

  37. H.W. Rosenberg:The Science Technology and Application of Titanium, R.I. Jafee and N.E. Promisel, eds., Pergamon Press, New York, NY, 1970, pp. 851–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Reader, Department of Metallurgical Engineering, Centre of Advanced Study, Institute of Technology, Banaras Hindu University, Varanasi-221 005, India

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A.K., Roy, T. & Ramachandra, C. Microstructural stability on aging of an α + β titanium alloy: ti- 6ai- 1.6zr-3.3mo- 0.30si. Metall Mater Trans A 27, 1167–1173 (1996). https://doi.org/10.1007/BF02649855

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649855

Keywords

Navigation