Skip to main content
Log in

Microstructural study of the titanium alloy Ti-15Mo-2.7Nb-3Al-0.2Si (TIMETAL 21S)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A relatively new titanium alloy, TIMETAL 21S (Ti-15Mo-2.7Nb-3Al-0.2Si-0.15O (in wt pct)), is a potential matrix material for advanced titanium matrix composites for elevated temperature use. In order to develop a perspective on the microstructural stability of this alloy, the influence of several commonly used heat treatments on the microstructure of TIMETAL 21S was studied using optical and transmission electron microscopy (TEM). Depending on the specific thermal treatment, a number of phases, includingα,ω- type, and silicide, can form in this alloy. It was found that both recrystallized and nonrecrystallized areas could be present in the microstructure of an annealed bulk alloy, but the microstructure of annealed sheet alloy was fully recrystallized. The mixed structure of the bulk alloy, developed as a result of inhomogeneous deformation, could not be removed by heat treatment alone at 900 °C. Athermalω-type phase formed in this alloy upon quenching from the solution treatment temperature (900 °C). Silicide precipitates were also found in the quenched sample. Thermal analysis was used to determine theβ transus and silicide solvus as close to 815 °C and 1025 °C, respectively. In solution-treated and quenched samples, a high-temperature aging at 600 °C resulted in the precipitation ofα phase. The precipitation reaction was slower in the recrystallized regions compared to the nonrecrystallized regions. During low-temperature aging (350 °C), the ellipsoidalω-type phase persisted in the recrystallized areas even after 100 hours, whereas a high density ofα precipitates developed in the nonrecrystallized areas within only 3 hours. The observed behavior in precipitation may be related to the influence of substructure in the nonrecrystallized areas, providing for an enhanced kinetics during aging. Theα precipitates (formed during continuous cooling from the solution treatment temperature, low-temperature aging, and high-temperature aging) always obeyed the Burgers orientation relationship. With respect to the microstructure, TIMETAL 21S is similar to other solute-lean, metastableβ titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Bania:Iron Steel Inst. Jpn. Int., 1991, vol. 31 (8), pp. 840–47.

    CAS  Google Scholar 

  2. P. Bania:Mater. Edge, 1991, vol. 25.

  3. J.C. Williams: inTitanium Science and Technology, R.I. Jaffee and H.M. Burte, eds., Plenum Press, New York, NY, 1973, vol. 3, pp. 1433–94.

    Google Scholar 

  4. C.G. Rhodes and J.C. Williams:Metall. Trans. A, 1975, vol. 6A, pp. 2103–14.

    CAS  Google Scholar 

  5. G.H. Narayanan and T.F. Archbold:Metall. Trans., 1970, vol. 1, pp. 2281–90.

    Article  CAS  Google Scholar 

  6. J.C. Williams, B.S. Hickman, and D.H. Leslie:Metall. Trans., 1971, vol. 2, pp. 477–84.

    CAS  Google Scholar 

  7. C.G. Rhodes and N.E. Paton:Metall. Trans. A, 1977, vol. 8A, pp. 1749–61.

    CAS  Google Scholar 

  8. V. Chandrasekaran, R. Taggart, and D.H. Polonis:Metallography, 1972, vol. 5, pp. 393–98.

    Article  CAS  Google Scholar 

  9. D. de Fontaine:Acta. Metall., 1970, vol. 18, pp. 275–79.

    Article  Google Scholar 

  10. B.S. Hickman:Trans. AIME, 1969, vol. 245, pp. 1329–36.

    CAS  Google Scholar 

  11. D. de Fontaine, N.E. Paton, and J.C. Williams:Acta Metall., 1971, vol. 19, pp. 1153–62.

    Article  Google Scholar 

  12. H. Froes, C.F. Yolton, J.M. Capenos, M.G.H. Wells, and J.C. Williams:Metall. Trans. A, 1980, vol. 11A, pp. 21–31.

    CAS  Google Scholar 

  13. E. Sukedai, H. Hashimoto, M. Hida, and H. Mabuchi:Mater. Sci. Tech., 1992, vol. 8, pp. 3–9.

    CAS  Google Scholar 

  14. J.C. Williams, D. de Fontaine, and N.E. Paton:Metall. Trans., 1973, vol. 4, pp. 2701–08.

    Article  CAS  Google Scholar 

  15. B.S. Hickman:J. Mater. Sci., 1969, vol. 4, pp. 554–63.

    Article  CAS  Google Scholar 

  16. A.W. Bowen: inBeta Titanium Alloys in the 1980’s, R.R. Boyer and H.W. Rosenberg, eds., AIME, Warrendale, PA, 1984, pp. 85–106.

    Google Scholar 

  17. S. Ankern, D. Banerjee, D.J. McNeish, J.C. Williams, and S.R. Seagle:Metall. Trans. A, 1987, vol. 18A, pp. 2015–25.

    Google Scholar 

  18. Thomas J. Headley and Henry J. Rack:Metall. Trans. A, 1979, vol. 10A, pp. 909–20.

    CAS  Google Scholar 

  19. M.W. Mahoney, P.L. Martin, and D.A. Hardwick: inTitanium ’92 Science and Technology, F.H. Froes and I.L. Caplan, eds., TMS, Warrendale, PA, 1993, vol. 1, pp. 161–68.

    Google Scholar 

  20. D. Upadhyaya, D.M. Blackketter, C. Suryanarayana, and F.H. Froes: inTitanium ’92 Science and Technology, F.H. Froes and I.L. Caplan, eds., TMS, Warrendale, PA, 1993, vol. 1, pp. 447–54.

    Google Scholar 

  21. R.E. Tressler, T.L. Moore, and R.L. Crane:J. Mater. Sci., 1973, vol. 8, pp. 151–61.

    Article  CAS  Google Scholar 

  22. C.F. Yolton, F.H. Froes, and R.F. Malone:Metall. Trans. A, 1979, vol. 10A, pp. 132–34.

    CAS  Google Scholar 

  23. H.W. Rosenberg: inBeta Titanium Alloys in the 1980’s, R. R. Boyer and H.W. Rosenberg, eds., AIME, Warrendale, PA, 1984, pp. 145–60.

    Google Scholar 

  24. J.L. Murray: inPhase Diagrams of Binary Titanium Alloys, J. L. Murray, ed., ASM INTERNATIONAL, Metals Park, OH, 1987.

    Google Scholar 

  25. S. Ankem and S.R. Seagle: inBeta Titanium Alloys in the 1980’s, R.R. Boyer and H.W. Rosenberg, eds., AIME, Warrendale, PA, 1984, pp. 107–26.

    Google Scholar 

  26. Y. Murakami: inTitanium ’80 Science and Technology, H. Kimura and O. Izumi, eds., AIME, Warrendale, PA, 1980, vol. 1, pp. 153–67.

    Google Scholar 

  27. T.W. Duerig and J.C. Williams: inBeta Titanium Alloys in the 1980’s, R.R. Boyer and H.W. Rosenberg, eds., AIME, Warrendale, PA, 1984, pp. 19–67.

    Google Scholar 

  28. F.H. Froes, J.M. Capenos, and C.F. Yolton:Metallography, 1976, vol. 9, pp. 535–37.

    Article  CAS  Google Scholar 

  29. F.H. Froes, C.F. Yolton, J.P. Hirth, R. Ondercin, and D. Moracz: inBeta Titanium Alloys in the 1980’s, R.R. Boyer and H. W. Rosenberg, eds., AIME, Warrendale, PA, 1984, pp. 161–84.

    Google Scholar 

  30. J. A. Hall: inBeta Titanium Alloys in the 1980’s, R.R. Boyer and H.W. Rosenberg, eds., AIME, Warrendale, PA, 1984, pp. 129–43.

    Google Scholar 

  31. W.G. Burgers:Physica, 1934, vol. 1, pp. 561–86.

    Article  CAS  Google Scholar 

  32. S.R. Seagle and H.B. Bomberger: inThe Science, Technology, and Application of Titanium, R.I. Jaffee and N.E. Promiel, eds., Pergamon Press, New York, NY, 1970, pp. 1001–08.

    Google Scholar 

  33. N.E. Paton and M.W. Mahoney:Metall. Trans. A, 1976, vol. 7A, pp. 1685–94.

    CAS  Google Scholar 

  34. M.W. Mahoney and N.E. Paton:Metall. Trans. A, 1978, vol. 9A, pp. 1497–1501.

    CAS  Google Scholar 

  35. M.R. Winstone, R.D. Rawlings, and D.R.F. West:J. Less- Common Met., 1975, vol. 39, pp. 205–17.

    Article  CAS  Google Scholar 

  36. A.T.K. Assadi, H.M. Flower, and D.R.F. West:Met. Technol., 1979, Jan., pp. 16–23.

    Google Scholar 

  37. M.J. Blackburn and J.C. Williams:Trans. AIME, 1968, vol. 242, pp. 2461–69.

    CAS  Google Scholar 

  38. J.C. Williams and M.J. Blackburn:Trans. AIME, 1969, vol. 245, pp. 2352–55.

    CAS  Google Scholar 

  39. J.M. Silcock, M.H. Davies, and H.K. Hardy: inThe Mechanisms of Phase Transformations in Metals, Institute of Metals Monograph No. 18, The Institute of Metals, London, 1956, pp. 93–104.

    Google Scholar 

  40. T. Inaba, K. Ameyama, and M. Tokizane:Iron Steel Inst. Jpn. Int., 1991, vol. 31, pp. 792–98.

    CAS  Google Scholar 

  41. R.A. Swalin:Thermodynamics of Solids, 2nd ed., John Wiley and Sons, New York, NY, 1972, p. 170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, K., Perepezko, J.H. Microstructural study of the titanium alloy Ti-15Mo-2.7Nb-3Al-0.2Si (TIMETAL 21S). Metall Mater Trans A 25, 1109–1118 (1994). https://doi.org/10.1007/BF02652286

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652286

Keywords

Navigation