Skip to main content
Log in

Through-thickness characterization of copper electrodeposit

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Through-thickness crystallographic texture, defect structure, and tensile embrittlement of 35 μm thick electrodeposit are characterized by successive thinning. An initially random grain structure, inherited from the substrate, evolves into a strong <220> fiber texture. The random to oriented grain transformation begins at the inception of thickening and is complete after about 15 μm deposit thickness, where about 0.9 volume fraction of grains become oriented near <220>. Further thickening of the deposit sharpens the texture, reducing the scatter around the <220> ideal orientation. A duplex coarse/fine particle (coherent domain) structure is obtained. Coarse particles along <220> are less defective and have smaller lattice strains; fine particles along <200>, presumably associated with the random grains, are defect-saturated with finely spaced twins, high dislocation density and enhanced lattice strains. With increasing distance from the shiny surface (of initial film formation), especially following the initial 10 μm deposit thickness, (a) along <220>: particle size and twin spacing increase whereas dislocation density and root mean square (rms) strains decrease, (b) along <200>: particle size increases gradually, dislocation density and rms strains increase sharply and the already fine twin spacing remains unchanged, and (c) the effective particle size ratio Deff<220>:Deff<200> exceeds 1.4, suggesting a twinning-induced z-direction particle shape anisotropy. A substantial decrease in tensile elongation is observed at 180°C. The embrittlement increases with the deposit thickness, attributed to the development of low density regions in the morphological boundaries. High elongation and embrittlement directional anisotropies are observed near the shiny surface, perhaps due to preferred nucleation on the substrate asperities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.S. Palatnik and A.I. Il’inskii,Soviet Phys. Uspekhi 11, 564 (1969).

    Article  Google Scholar 

  2. I.T. Aleksanyan, L.A. Tumanova and T.D. Shemargor,Phys. Met. Metall. 34 (3), 200 (1972).

    Google Scholar 

  3. N.A. Pangarov, S.D. Vitkova and I. Vzunova,Electrochim. Acta 11, 1747(1966).

    Article  CAS  Google Scholar 

  4. N. Atanassov, S. Vitkova and S. Rashkov,Surf. Tech. 13,215 (1981).

    Article  Google Scholar 

  5. I. Tomav,Mats. Sci. Forum 133–136, 175 (1993).

    Article  Google Scholar 

  6. J. Bebczuk de Cusminsky,J. Cryst. Growth 41, 330 (1977).

    Article  Google Scholar 

  7. H.D. Merchant,J. Electron. Mater. 22, 631 (1993).

    CAS  Google Scholar 

  8. L. G. Shultz,J. Appl. Phys. 20, 1030 (1949).

    Article  Google Scholar 

  9. R. Junginger and G. Eisner,J. Electroch. Soc. 135, 2305 (1988).

    Google Scholar 

  10. E.M. Hofer and H.E. Hintermann,J. Electroch. Soc. 112,165 (1965).

    Google Scholar 

  11. D.E. Warren,X-ray Diffraction, (Reading, MA: Addison Wesley, 1969), p. 251.

    Google Scholar 

  12. D.B. Knorr, D.P. Tracy and T.M. Lu,Textures and Micro-structures 14–18, 543 (1991).

    Google Scholar 

  13. W.P. Chernock and P.A. Beck,J. Appl. Phys. 23, 341 (1952).

    Article  Google Scholar 

  14. H.P. Klug and L.E. Alexander,X-Ray Diffraction Procedures, (New York: John Wiley, 1954).

    Google Scholar 

  15. D.B. Knorr,Mater. Res. Soc. Proc. 309, 75 (1993).

    CAS  Google Scholar 

  16. P. Ganesan, H.K. Kuo and R.J. DeAngelis,J. Catalysis 55, 310 (1978).

    Article  Google Scholar 

  17. O.B. Girin, V.P. Khlyntsev and G.M. Vorobev,Russ. Met. (4) 172 (1988).

  18. O.B. Girin,Russ. Met. (4) 130 (1990);Indus. Lab. 49, 55 (1983).

  19. K. Lin and K.G. Sheppard,Plating Surf. Fin. 80, 40 (Aug. 1993).

    CAS  Google Scholar 

  20. T..Chen and P. Cavalotti,IEEE Trans. Magn. 18,1125(1982).

    Article  Google Scholar 

  21. Y. Maeda,Jpn. J. Appl. Phys. Part 2, 24, L951 (1985).

    Article  CAS  Google Scholar 

  22. N. Atanassov, S. Vitkova and S. Rashkov,Surf. Tech. 13,215 (1981).

    Article  Google Scholar 

  23. C. Schmidt,Galvanotechnik 82, 3800 (1991).

    CAS  Google Scholar 

  24. E.A. Mamontov, L.A. Kurzbatova and A.P. Volenko,Soviet Electroch. 22, 589 (1986).

    Google Scholar 

  25. O.B. Girin and V.R. Khlyntsev,Russ. Met. (6) 151 (1990).

  26. M. Froment and G. Maurin,J. Microsc. Spectrosc. Electron. 12, 379 (1987).

    CAS  Google Scholar 

  27. B. Grushko and G.R. Stafford,Scripta Metall. 23, 557, 1043 (1989);Metall. Trans. 20A, 1351 (1989); 21A, 2869 (1990).

    Article  CAS  Google Scholar 

  28. V.G. Shadrow, A.V. Boltushkin and T.A. Tochitskit,Russ. Met. (4) 61 (1990).

  29. V.V. Gubin et al.,Soviet Electroch. 20, 671 (1984).

    Google Scholar 

  30. K. Farrel and J.T. Houston,Metall. Trans, 1, 1979 (1970).

    Article  Google Scholar 

  31. S. Nakahara and Y. Okinaka,Annu. Rev. Mater. Sci. 21, 93 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Angelis, R.J., Knorr, D.B. & Merchant, H.D. Through-thickness characterization of copper electrodeposit. J. Electron. Mater. 24, 927–933 (1995). https://doi.org/10.1007/BF02652963

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652963

Key words

Navigation