Skip to main content
Log in

A model to predict carburization profiles in high temperature alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A mathematical model has been developed which, by means of finite difference computation techniques, permits the prediction of carbon concentration profiles in carburized high temperature alloys. It is assumed that a proportion of the carbon which diffuses into the alloy reacts with elements such as chromium to form carbide precipitates. The amount of carbon remaining in solution is determined from the solubility product of the carbide. Only this carbon in solution is able to diffuse through the alloy matrix, and thus the carbide precipitation process reduces the rate of carburization. Applying the model, the diffusion coefficient of carbon in Alloy 800 H at 900 °C has been determined as (3.3 ± 0.5) × 10−8 cm2/s. The model can also treat the carburization of an alloy containing two carbide-forming elements, but application to alloys containing both chromium and niobium (columbium) was successful only to a limited extent, probably as a result of the slow, complex kinetics of carbide precipitation. The model can be used to adapt carbon concentration profiles from one geometrical configuration to another. On the basis of profiles determined experimentally on small, cylindrical test specimens, carbon concenration profiles have been predicted for thick section tubes of Alloy 800 H exposed to a carburizing environment for up to 100,000 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Thorley and C. Tyzack:Proc. BNES Conf. on Effects of Environment on Material Properties in Nuclear Systems, pp. 143–54, British Nuclear Energy Society, London, 1971.

    Google Scholar 

  2. P. J. Ennis and D. F. Lupton:Proc. Int. Conf. on Behaviour of Alloys in Aggressive Environments, Petten, 1979 (to be published).

  3. D. B. Roach: NACE Meeting, Corrosion/76, Paper No. 7, Houston, 1976.

  4. A. Schnaas and H. J. Grabke:Werkst. Korros., 1978, vol. 29, pp. 635–44.

    Article  CAS  Google Scholar 

  5. A. Schnaas and H. J. Grabke:Oxid. Met., 1978, vol. 12, pp. 387–404.

    Article  CAS  Google Scholar 

  6. O. Demel:Radex Rundsch., 1977, vol. 2, pp. 201–09.

    Google Scholar 

  7. J. I. Goldstein and A. E. Moren:Met. Trans. A, 1978, vol. 9A, pp. 1515–25.

    CAS  Google Scholar 

  8. J. Crank:The Mathematics of Diffusion, Oxford University Press, London, 1964.

    Google Scholar 

  9. H. Tůma, P. Gröbner, and K. Löbl:Arch. Eisenhüttenwes., 1969, vol. 40, pp. 727–31.

    Google Scholar 

  10. P. J. Ennis, D. F. Lupton, and H. Nickel: KFA Report JÜL, in press.

  11. J. Jeanin, C. Mannerskantz, and F. D. Richardson:Trans. TMS-A1ME, 1963, vol. 227, pp. 300–05.

    Google Scholar 

  12. F. N. Mazandarany and R. D. Pehlke:Met. Trans., 1973, vol. 4, pp. 2067–76.

    Article  CAS  Google Scholar 

  13. W. Slough, P. J. Spencer, and O. Kubaschewski:J. Chem. Thermodyn., 1970, vol. 2, pp. 117–24.

    Article  CAS  Google Scholar 

  14. K. Natesan and T. F. Kassner:Met. Trans., 1973, vol. 4, pp. 2557–66.

    CAS  Google Scholar 

  15. E. Schürmann, K. H. Harre, and H. J. Rimkus:Giesserei-forschung, 1974, vol. 26, pp. 31–42.

    Google Scholar 

  16. A. V. Dean: Proc.Int. Conf. on Behaviour of Alloys in Aggressive Environments, Petten, 1979 (to be published).

  17. R. P. Agarwala, M. C. Naik, M. S. Anand, and A. R. Paul:J. Nucl. Mater., 1970, vol. 36, pp. 41–47.

    Article  CAS  Google Scholar 

  18. R. A. Perkins and P. T. Carlson:Met. Trans., 1974, vol. 5, pp. 1511–14.

    Article  CAS  Google Scholar 

  19. O. Kubaschewski and C. B. Alcock:Metallurgical Thermochemistry, 5th edition, p. 381, Pergamon, Oxford, 1979.

    Google Scholar 

  20. P. J. Spencer: Private communication, Rheinisch-Westfälische Technische Hochschule, Aachen, Federal Republic of Germany.

  21. S. K. Bose and H. J. Grabke:Z. Metallkd., 1978, vol. 69, pp. 8–15.

    CAS  Google Scholar 

  22. O. Böhm and M. Kahlweit:Acta Metall., 1964, vol. 12, pp. 641–48.

    Article  Google Scholar 

  23. G. Roberts:Met. Sci., 1979, vol. 13, pp. 94–97.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly of the Institute of Reactor Materials, Nuclear Research Centre (KFA), Jülich

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bongartz, K., Lupton, D.F. & Schuster, H. A model to predict carburization profiles in high temperature alloys. Metall Trans A 11, 1883–1893 (1980). https://doi.org/10.1007/BF02655105

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655105

Keywords

Navigation