Skip to main content
Log in

Fatigue of stainless steel in hydrogen

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The fatigue crack growth rates of two austenitic stainless steel alloys, AISI 301 and 302, were compared in air, argon, and hydrogen environments at atmospheric pressure and room temperature. Under the stresses at the crack tip the austenite in type 301 steel transformed martensitically to a’ to a greater extent than in type 302 steel. The steels were also tested in the cold worked condition under hydrogen or argon. Hydrogen was found to have a deleterious effect on both steels, but the effect was stronger in the unstable than in the stable alloy. Cold work decreased fatigue crack growth rates in argon and hydrogen, but the decrease was less marked in hydrogen than in argon. Metallographic, fractographic, and microhardness surveys in the vicinity of the fatigue crack were used to try to understand the reasons for the observed fatigue behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Schuster and C. Altstetter:Metall. Trans. A, 1983, vol. 14A, p. 2077.

    CAS  Google Scholar 

  2. G. Schuster and C. Altstetter:Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage, J. Lankford, D. Davidson, W. Morris, and R. Wei, eds., STP 811, ASTM, Philadelphia, PA, 1983.

    Google Scholar 

  3. D. Eliezer, D. Chakrapani, C. Altstetter, and E. N. Pugh:Metall. Trans. A, 1979, vol. 10A, p. 935.

    CAS  Google Scholar 

  4. R. Liu, N. Narita, C. Altstetter, H. Birnbaum, and E. N. Pugh:Metall. Trans. A, 1980, vol. 11 A, p. 1563.

    Google Scholar 

  5. S. Singh and C. Altstetter:Metall. Trans. A, 1982, vol. 13A, p. 1799.

    Google Scholar 

  6. F. Pickering:Optimization of Processing, Properties and Service Performance Through Microstructural Control, STP 672, ASTM, Philadelpia, PA, 1979, p. 263.

    Google Scholar 

  7. T. Angel:J. Iron and Steel Inst., 1954, vol. 173, p. 165.

    Google Scholar 

  8. J. Harris and M. Van Wanderham:Hvdrogen Embrittlemenl Testing, STP 543, ASTM, Philadelphia, PA, 1974, p. 198.

    Google Scholar 

  9. K. Rie, J. Ruge, and W. Köhler:Hydrogen in Metals, Suppl. to Trans. J.I.M., 1980, vol. 21, p. 529.

    Google Scholar 

  10. A. Romaniv, V. Tkachev, V. Starinskii, V. Duryagin, and V. Alymov:Sov. Mat. Sci., 1977, vol. 13, p. 532.

    Article  Google Scholar 

  11. A. Romaniv:Sov. Mat. Sci., 1981, vol. 17, p. 414.

    Article  Google Scholar 

  12. H. Andriamiharisoa, M. Habashi, S. Talbot-Besnard, J. Galland, and P. Azou:Hydrogen Effects in Metals, I. M. Bernstein and A.W. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, p. 619.

    Google Scholar 

  13. G. Barannikova and Z. Samoylenko:Phys. Met. Metallog., 1980, vol. 49, p. 191.

    Google Scholar 

  14. G. Caskey:Scr. Met., 1977, vol. 11, p. 1077.

    Article  CAS  Google Scholar 

  15. R. Reed:Acta Met., 1962, vol. 10, p. 865.

    Article  CAS  Google Scholar 

  16. J. Breedis and W. Robertson:acta Met., 1962, vol. 10, p. 1077.

    Article  CAS  Google Scholar 

  17. N. Narita, C. Altstetter, and H. Birnbaum:Metall. Trans. A, 1982, vol. 13A, p. 1355.

    Google Scholar 

  18. N. Narita and H. Birnbaum:Scr. Met., 1980, vol. 14, p. 1355.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Department of Metallurgy, University of Illinois at Urbana-Champaign

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, G., Altstetter, C. Fatigue of stainless steel in hydrogen. Metall Trans A 14, 2085–2090 (1983). https://doi.org/10.1007/BF02662375

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02662375

Keywords

Navigation