Skip to main content
Log in

Thermodynamics of Ti in Ag-Cu alloys

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The thermodynamic activities of Ti at dilution in a series of Ag-Cu alloys and eutectic Ag-Cu alloys containing In or Sn were measured using a galvanic cell technique employing a ThO2-8 pct Y2O3 electrolyte. The equilibrium oxide phase formed by the reaction of Ti (XTi > 0.004) in the Ag-Cu alloy melts with an A12O3 or ZrO2 crucible was Ti2O (s). The free energy of formation of Ti2O (s) was estimated from available thermodynamic data. Titanium activities were calculated from measured oxygen potentials and the free energy of formation of Ti2O (s). Titanium in the eutectic Ag-Cu melt showed a positive deviation from ideal solution behavior at 1000°C, and its activity coefficient at infinite dilution was about 6.5 relative to pure solid Ti. Indium and Sn did not increase the activity coefficient of Ti in eutectic Ag-Cu melts. Silver increased the Ti activity coefficient in the Ag-Cu-Ti melts significantly. The Ti activity coefficient value in liquid Ag was about 20 times higher than in eutectic Ag-Cu melt at 1000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Economo and W.D. Kingery:J. Am Ceram. Soc., 1953, vol. 36, pp. 403–09.

    Article  Google Scholar 

  2. M. Humenik, Jr. and W.D. Kingery:J. Am. Ceram. Soc., 1954, vol. 37, pp. 18–23.

    Article  Google Scholar 

  3. B.C. Allen and W.D. Kingery:Trans. AIME, 1959, vol. 215, pp. 30–36.

    CAS  Google Scholar 

  4. J.E. McDonald and J.G. Eberhart:Trans. AIME, 1965, vol. 233, pp. 512–17.

    CAS  Google Scholar 

  5. Yu.V. Naidich, V.S. Zhuravlev, V.G. Chuprina, and L.V. Strashinskaya:Sov. Powder Metall. Met. Ceram., 1973, vol. 12, pp. 895–99.

    Google Scholar 

  6. M.G. Nicholas, T.M. Valentine, and M. J. Waite:J. Mater. Sci., 1980, vol. 15, pp. 2197–2206.

    Article  CAS  Google Scholar 

  7. A.J. Moorhead:Adv. Ceram. Mater., 1987, vol. 2, pp. 159–66.

    CAS  Google Scholar 

  8. A.J. Moorhead, H.M. Henson, and T.J. Henson: inCeramic Microstructures ’86, J.A. Pask and A.G. Evans, eds., Plenum Publishing Co., New York, NY, 1988, pp. 949–58.

    Google Scholar 

  9. M.G. Nicholas:Br. Ceram. Trans. J., 1986, vol. 85, pp. 144–46.

    CAS  Google Scholar 

  10. T.B. Massalski:Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1986, vols. 1 and 2.

    Google Scholar 

  11. A.R. Romero, J. Härkki, and D. Janke:Steel Res., 1986, vol. 57 (12), pp. 636–44.

    Google Scholar 

  12. H. Schmalzried:Z. Phys. Chem., 1963, vol. 38 (1-2), pp. 87–102.

    Google Scholar 

  13. D. Janke: inAdvances in Ceramics, Volume 12’, Science and Technology of Zirconia II, N. Claussen, M. Riihle, and A.H. Heuer, eds., The American Ceramic Society, Columbus, OH, 1984, pp. 636–45.

    Google Scholar 

  14. M.W. Chase, J.L. Curnutt, H. Prophet, and R.A. McDonald:J. Phys. Chem. Ref. Data, 1975, vol. 4 (1), pp. 137–47.

    Google Scholar 

  15. M.L. Santella, A.T. Fisher, and C.P. Haltom:J. Electron Microsc. Tech., 1988, vol. 8, pp. 211–15.

    Article  CAS  Google Scholar 

  16. A.D. Mah, K.K. Kelley, N.L. Geliert, E.G. King, and C.J. O’Brien: Bur. Mines Rep. Invest. 5316, 1957.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pak, J.J., Santella, M.L. & Fruehan, R.J. Thermodynamics of Ti in Ag-Cu alloys. Metall Trans B 21, 349–355 (1990). https://doi.org/10.1007/BF02664203

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02664203

Keywords

Navigation