Skip to main content
Log in

Effect of sulfur content on the microstructure and toughness of simulated Heat-Affected zone in Ti-Killed steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Four Ti-killed steels were made to study the specific influence of sulfur on the inclusion, microstructure, and toughness of a simulated heat-affected zone (HAZ). The HAZ toughness was mainly determined by the volume fraction of intragranular acicular ferrite (IAF) which was closely related to the supercooling required to initiate austenite to ferrite transformation. The extent of supercooling was strongly influenced by the composition of grain boundary and inclusions. Sulfur addition up to 102 ppm caused a segregation of sulfur to the grain boundaries and a change of inclusion phase from predominantly Ti-oxides to Ti-oxysulphides and MnS. This behavior, in turn, suppressed the formation of polygonal ferrite and promoted the formation of IAF. Further addition of sulfur elevated transformation temperature and promoted the formation of polygonal ferrite due to the refinement of grain size and the increase of grain boundary associated inclusions. A methodology was proposed to evaluate the intragranular nucleation potential of inclusions, and the results showed that Ti-oxysulphides possessed better nucleation potential for IAF than Ti-oxides and MnS. With the lowest transformation temperature and most effective nuclei, the best HAZ toughness can be obtained at sulfur content of 102 ppm due to the achievement of the maximum volume fraction of IAF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Furusawa, K. Arimochi, H. Kurayasu, N. Madano, and S. Suzuki:Sumitomo Kinzoku, 1998, vol. 40, pp. 39–47.

    Google Scholar 

  2. S. Deshimari, I. Hirai, K. Amano, S. Ueda, T. Uemura, and K. Tsubota:Kawasaki Steel Tech. Rep., 1987, No. 17, pp. 34–40.

  3. F. Heisterkamp, K. Hulka, and A.D. Batte: inProc. Conf. “The Metallurgy, Welding and Qualification of Microalloyed HSLA Steel Weldment,” American Welding Society, Houston, TX, 1990, pp. 638–60.

    Google Scholar 

  4. D.J. Abson, R.E. Dolby, and P.H.M. Hart: inInt. Conf. “Trends in Steels and Consumables for Welding,” The Welding Institute, London, 1987, pp. 75–101.

    Google Scholar 

  5. R.A. Ricks, P.R. Howell, and G.S. Barritte:J. Mater. Sci., 1982, vol. 17, pp. 731–40.

    Article  Google Scholar 

  6. A.R. Mill, G. Thewlis, and J.A. Whiteman:Mater. Sci. Technol., 1987, vol. 3, pp. 1051–61.

    Article  Google Scholar 

  7. J.M. Dowling, J.M. Corbelt, and H.W. Kerr:Metall. Trans. A 1986, vol. 17A, pp. 1611–23.

    Article  CAS  Google Scholar 

  8. S. Liu and D.L. Olson:Weld. J., 1986, vol. 65, pp. 139s-149s.

    Google Scholar 

  9. F.J. Barbara, P. Krauklis, and K.E. Easterling:Mater. Sci. Technol., 1989, vol. 5, pp. 1057–68.

    Article  Google Scholar 

  10. S. Ohkita, M. Wakabayashi, H. Homma, K. Yamamoto, and S. Matsuda:Nippon Steel Tech. Rep., 1989, vol. 37, pp. 10–16.

    Google Scholar 

  11. M. Koibe, H. Homma, S. Matsuda, M. Imagunbai, M. Hirai, and F. Yamaguchi: U.S. Patent 4,629,504, December 16, 1986.

  12. K. Yamamoto, S. Matsuda, T.H. Haze, R. Chijiiwa, and H. Mimura: inResidual and unspecified elements in steel, STP 1042, A.S. Melilli and E.G. Nisbett, eds., Philadelphia, PA, ASM, 1989, pp. 264–84.

    Google Scholar 

  13. J.L. Lee and Y.T. Pan:Mater. Sci. Eng., 1991, vol. A136, pp. 109–19.

    Article  CAS  Google Scholar 

  14. J.L. Lee and Y.T. Pan:Metall. Trans. A, 1991, vol. 22A, pp. 2818–22.

    Article  CAS  Google Scholar 

  15. Y.T. Pan and J.L. Lee: in3rd Int. Conf. on Trends in Welding Research, Gatlinburg, TN, 1992, in press.

  16. J.L. Lee and Y.T. Pan:Mater. Sci. Technol., 1992, vol. 8, pp. 236–44.

    Article  CAS  Google Scholar 

  17. G.M. Evans:Met. Constr., 1986, vol. 44, pp. 631R-636R.

    Google Scholar 

  18. L. Devillers, D. Kaplan, B. Marandet, A. Ribes, and P.V. Riboud: inConf. on the Effects of Residual, Impurity and Microalloying Elements on the Weldability and Weld Properties, 1983, The Welding Institute, Abington, United Kingdom, pp. 1–12.

    Google Scholar 

  19. S. St-Laurent and G. L’Esperance:Mater. Sci. Eng., 1992, vol. A149, pp. 203–16.

    Article  CAS  Google Scholar 

  20. Y. Ueshima, H. Yuyama, S. Mizoguchi, and H. Kajioka:Iron and Steel, 1989, vol. 75, pp. 501–08.

    CAS  Google Scholar 

  21. D.J. Abson:Weld. World, 1989, vol. 27, pp. 76–101.

    CAS  Google Scholar 

  22. I. Nomura, N. Iwama, and Y. Wakikado:Int. Conf. on Physical Metallurgy of Thermechanical Processing of Steels and Other Metals, The Iron and Steel Institute of Japan, Tokyo, 1988, pp. 375–82.

    Google Scholar 

  23. H.J. Grabke:Iron Steel Inst. Jpn. Int., 1989, vol. 29, pp. 529–38.

    Article  CAS  Google Scholar 

  24. H. Kobayashi:Iron Steel Inst. Jpn. Int., 1991, vol. 31, pp. 268–77.

    Article  CAS  Google Scholar 

  25. J. Jang and J.E. Indacochea:J. Mater. Sci., 1987, vol. 22, pp. 689–700.

    Article  CAS  Google Scholar 

  26. P.L. Harrison and R.A. Farrar:J. Mater. Sci., 1981, vol. 16, pp. 2218–26.

    Article  CAS  Google Scholar 

  27. Y. Ito and M. Naksnish:Sumitomo Search, 1976, vol. 15, pp. 42–51.

    CAS  Google Scholar 

  28. Bruce L. Bramfitt:Metall. Trans., 1970, vol. 1, pp. 1987–95.

    Article  CAS  Google Scholar 

  29. F.C. Liao and S. Liu:Weld. J., 1992, vol. 71, pp. 94s-103s.

    Google Scholar 

  30. S. St-Laurent and G. L’Esperance: in3rd Int. Conf. on Trends in Welding Research, 1992, Gatlinburg, TN, in press.

  31. Y.T. Pan and J.L. Lee:China Steel Tech. Rep., 1992, No. 6, pp. 10–18.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JL., Pan, YT. Effect of sulfur content on the microstructure and toughness of simulated Heat-Affected zone in Ti-Killed steels. Metall Trans A 24, 1399–1408 (1993). https://doi.org/10.1007/BF02668208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668208

Keywords

Navigation