Skip to main content
Log in

Creep strengthening in a discontinuous SiC-Al composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-temperature strengthening mechanisms in discontinuous metal matrix composites were examined by performing a close comparison between the creep behavior of 30 vol pct SiC-6061 Al and that of its matrix alloy, 6061 Al. Both materials were prepared by powder metallurgy techniques. The experimental data show that the creep behavior of the composite is similar to that of the alloy in regard to the high apparent stress exponent and its variation with the applied stress and the strong temperature dependence of creep rate. By contrast, the data reveal that there are two main differences in creep behavior between the composite and the alloy: the creep rates of the composite are more than one order of magnitude slower than those of the alloy, and the activation energy for creep in the composite is higher than that in the alloy. Analysis of the experimental data indicates that these similarities and differences in creep behavior can be explained in terms of two independent strengthening processes that are related to (a) the existence of a temperature-dependent threshold stress for creep, τ0, in both materials and (b) the occurrence of temperature dependent load transfer from the creeping matrix (6061 Al) to the reinforcement (SiC). This finding is illustrated by two results. First, the high apparent activation energies for creep in the composite are corrected to a value near the true activation energy for creep in the unreinforced alloy (160 kJ/mole) by considering the temperature dependence of the shear modulus, the threshold stress, and the load transfer. Second, the normalized creep data of the composite fall very close to those of the alloy when the contribution of load transfer to composite strengthening is incorporated in a creep power law in which the applied stress is replaced by the effective stress, the stress exponent,n, equals 5, and the true activation energy for creep in the composite,Q c , is equal to that in the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.G. Nieh:Metall. Trans. A, 1984, vol. 15A, pp. 139–46.

    CAS  Google Scholar 

  2. V.C. Nardone and J.R. Strife:Metall. Trans. A, 1987, vol. 18A, pp. 109–14.

    CAS  Google Scholar 

  3. T.G. Nieh, K. Xia, and T.G. Langdon:J. Eng. Mater. Technol., 1988, vol. 110, pp. 77–82.

    CAS  Google Scholar 

  4. T. Morimoto, T. Yamaoka, H. Lilholt, and M. Taya:J. Eng. Mater. Technol., 1988, vol. 110, pp. 70–76.

    Article  CAS  Google Scholar 

  5. K.T. Park, E.J. Lavernia, and F.A. Mohamed:Acta Metall. Mater., 1990, vol. 38, pp. 2149–59.

    Article  CAS  Google Scholar 

  6. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan:Acta Metall. Mater., 1992, vol. 40, pp. 2045–52.

    Article  CAS  Google Scholar 

  7. G. Gonzalez-Doncel and O.D. Sherby:Acta Metall. Mater., 1993, vol. 41, pp. 2797–2805.

    Article  CAS  Google Scholar 

  8. T.L. Dragone and W.D. Nix:Acta Metall. Mater., 1992, vol. 40, pp. 2781–91.

    Article  CAS  Google Scholar 

  9. T.L. Dragone and W.D. Nix:Acta Metall. Mater., 1990, vol. 38, pp. 1941–53.

    Article  Google Scholar 

  10. F.A. Mohamed, K.T. Park, and E.J. Lavernia:Mater. Sci. Eng., 1992, vol. 150A, pp. 21–35.

    Google Scholar 

  11. R.W. Lund and W.D. Nix:Acta Metall., 1976, vol. 24, pp. 469–79.

    Article  CAS  Google Scholar 

  12. W.C. Oliver and W.D. Nix:Acta Metall., 1982, vol. 30, pp. 1335–47.

    Article  Google Scholar 

  13. E. Orowan: inDislocations in Metals, M. Cohen, ed., AIME, New York, NY, 1954, p. 131.

    Google Scholar 

  14. R.S. Shewfelt and L.M. Brown:Phil. Mag. A, 1977, vol. 35, pp. 945–62.

    Article  CAS  Google Scholar 

  15. E. Arzt and M.F. Ashby:Scripta Metall, 1982, vol. 16, pp. 1285–90.

    Article  Google Scholar 

  16. E. Arzt and D.S. Wilkinson:Acta Metall., 1986, vol. 34, pp. 1893–98.

    Article  CAS  Google Scholar 

  17. E. Arzt and J. Rosier:Acta Metall., 1988, vol. 36, pp. 1053–60.

    Article  CAS  Google Scholar 

  18. J. Rosier and E. Arzt:Acta Metall. Mater., 1990, vol. 38, pp. 671–83.

    Article  Google Scholar 

  19. R.S. Mishra and A.B. Pandey:Metall. Trans. A, 1990, vol. 21 A, pp. 2089–90.

    Google Scholar 

  20. O.D. Sherby, R.H. Klundt, and A.K. Miller:Metall. Trans. A, 1977, vol. 8A, pp. 843–50.

    CAS  Google Scholar 

  21. K.T. Park, E.J. Lavernia, and F.A. Mohamed:Acta Metall. Mater., 1994, vol. 42, pp. 667–78.

    Article  CAS  Google Scholar 

  22. A. Kelly and K.N. Street:Proc. R. Soc. London, 1972, vol. 328A, pp. 267–82.

    Google Scholar 

  23. A. Kelly and K.N. Street:Proc. R. Soc. London, 1972, vol. 328A, pp. 283–93.

    Google Scholar 

  24. G. Bao, J.W. Huchinson, and R.M. McMeeking:Acta Metall. Mater., 1991, vol. 39, pp. 1871–82.

    Article  Google Scholar 

  25. J. Rosier, G. Bao, and A.G. Evans:Acta Metall. Mater., 1991, vol. 39, pp. 2733–38.

    Article  Google Scholar 

  26. K.T. Park, E.J. Lavernia, and F.A. Mohamed:Acta Metall. Mater., 1990, vol. 38, pp. 1837–48.

    Article  CAS  Google Scholar 

  27. P.E. Krajewski, J.E. Allison, and J.W. Jones:Metall. Trans. A, 1993, vol. 24A, pp. 2731–41.

    CAS  Google Scholar 

  28. R.W. Lund and W.D. Nix:Metall. Trans. A, 1975, vol. 6A, pp. 1329–33.

    CAS  Google Scholar 

  29. F.A. Mohamed:J. Mater. Sci., 1983, vol. 18, pp. 582–92.

    Article  Google Scholar 

  30. O.D. Sherby and P.M. Burke:Prog. Mater. Sci., 1968, vol. 13, pp. 325–90.

    Article  Google Scholar 

  31. F.A. Mohamed and T.G. Langdon:Acta Metall., 1974, vol. 22, pp. 779–88.

    Article  CAS  Google Scholar 

  32. P.K. Chaudhury and F.A. Mohamed:Acta Metall. Mater., 1988, vol. 36, pp. 1099–1110.

    Article  CAS  Google Scholar 

  33. A.K. Mukherjee, J.E. Bird, and J.E. Dorn:Trans. ASM, 1969, vol. 62, pp. 155–79.

    CAS  Google Scholar 

  34. R.J. Arsenault and N. Shi:Mater. Sci. Eng., 1986, vol. 81A, pp. 175–87.

    Google Scholar 

  35. H. Lilholt:Comp. Sci. Technol., 1985, vol. 22, pp. 277–89.

    Article  CAS  Google Scholar 

  36. V.C. Nardone and K.M. Prewo:Scripta Metall. Mater., 1986, vol. 20, pp. 43–48.

    CAS  Google Scholar 

  37. S. Goto and M. McLean:Acta Metall. Mater., 1991, vol. 39, pp. 153–64.

    Article  CAS  Google Scholar 

  38. S. Goto and M. McLean:Acta Metall. Mater., 1991, vol. 39, pp. 165–77.

    Article  CAS  Google Scholar 

  39. D.J. Srolovitz, R. Petkovic-Luton, and M.J. Luton:Phil. Mag. A, 1983, vol. 48, pp. 795–809.

    Article  CAS  Google Scholar 

  40. D.J. Srolovitz, R. Petkovic-Luton, and M.J. Luton:Acta Metall., 1983, vol. 31, pp. 2151–59.

    Article  CAS  Google Scholar 

  41. D.J. Srolovitz, M.J. Luton, R. Petkovic-Luton, D.M. Barnett, and W.D. Nix:Acta Metall., 1984, vol. 32, pp. 1079–88.

    Article  CAS  Google Scholar 

  42. T.L. Dragone, J.J. Schlautmann, and W.D. Nix:Metall. Trans. A, 1991, vol. 22A, pp. 1029–36.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

formerly Research Associate, Materials Section, Department of Mechanical and Aerospace Engineering, University of California

This article is based on a presentation made in the symposium entitled “Creep and Fatigue in Metal Matrix Composites” at the 1994 TMS/ASM Spring meeting, held February 28–March 3, 1994, in San Francisco, California, under the auspices of the Joint TMS-SMD/ASM-MSD Composite Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, KT., Mohamed, F.A. Creep strengthening in a discontinuous SiC-Al composite. Metall Mater Trans A 26, 3119–3129 (1995). https://doi.org/10.1007/BF02669441

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669441

Keywords

Navigation