Skip to main content
Log in

An evaluation of fiber-reinforced titanium matrix composites for advanced high-temperature aerospace applications

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The current capabilities of continuous silicon-carbide fiber-reinforced titanium matrix composites (TMCs) are reviewed with respect to application needs and compared to the capabilities of conventional high-temperature monolithic alloys and aluminides. In particular, the properties of a firstgeneration titanium aluminide composite, SCS-6/Ti-24Al-11Nb, and a second-generation metastable beta alloy composite, SCS-6/TIMETAL 21S, are compared with the nickel-base superalloy IN100, the high-temperature titanium alloy Ti-1100, and a relatively new titanium aluminide alloy. Emphasis is given to life-limiting cyclic and monotonie properties and to the influence of time-dependent deformation and environmental effects on these properties. The composite materials offer a wide range of performance capabilities, depending on laminate architecture. In many instances, unidirectional composites exhibit outstanding properties, although the same materials loaded transverse to the fiber direction typically exhibit very poor properties, primarily due to the weak fiber/matrix interface. Depending on the specific mechanical property under consideration, composite cross-ply laminates often show no improvement over the capability of conventional monolithic materials. Thus, it is essential that these composite materials be tailored to achieve a balance of properties suitable to the specific application needs if these materials are to be attractive candidates to replace more conventional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Larsen, K.A. Williams, S.J. Balsone, and M.A. Stucke: inHigh Temperature Aluminides and Intermetallics, S.H. Whang, C.T. Liu, D.P. Pope and J.O. Stiegler, eds., TMS, Warrendale, PA, 1990, pp. 521–56.

    Google Scholar 

  2. R.A. MacKay, P.K. Brindley, and F.H. Froes:JOM, 1991, vol. 43, pp. 23–29.

    CAS  Google Scholar 

  3. J.M. Larsen, W.C. Revelos, and M.L. Gambone:Intermetallic Matrix Composites II, Materials Research Society Symposia Proceedings, D.B. Miracle, D.L. Anton, and J.A. Graves, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 273, pp. 3–16.

    Google Scholar 

  4. J.M. Larsen, S.M. Russ, and J.W. Jones: Report No. AGARD-R-796, NATO Advisory Group for Aerospace Research and Development (AGARD), Specialised Printing Services Ltd., Loughton, Essex, England, 1994, pp. 1.1–1.21.

  5. Integrated High Performance Turbine Engine Technology Initiative, Wright Laboratory (WL/POT), Wright-Patterson AFB, OH, 1994.

  6. S.W. Kandebo:Aviat. Week Space Technol, Oct. 29, 1990, pp. 36–47.

  7. T.M.F. Ronald:Adv. Mater. Processes, 1989, vol. 135, pp. 29–37.

    Google Scholar 

  8. M.L. Gambone: U.S. Air Force Report No. WRDC-TR-89-4145.II (NTIS Report No. AD-A227353), Wright-Patterson Air Force Base, OH, 1989.

  9. J.M. Larsen, B.J. Schwartz, and C.G. Annis, Jr.: U.S. Air Force Materials Laboratory Report No. AFML-TR-79-4159 (NTIS Report No. AD-B138814L), Wright-Patterson Air Force Base, OH, 1979.

  10. B.A. Cowles: Pratt and Whitney Aircraft, West Palm Beach, FL, private communication, 1989.

  11. P.J. Bania:JOM, 1988, pp. 20–22.

  12. P.J. Bania:Space Age Metals Technology, SAMPE, Covina, CA, 1988, pp. 286–97.

    Google Scholar 

  13. M.J. Blackburn and M.P. Smith: U.S. Air Force Report No. WRDC- TR-89-4045 (NTIS Report No. AD-B138814L), Wright-Patterson Air Force Base, OH, 1989.

  14. M.L. Gambone and F.E. Wawner:Mater. Res. Soc. Symp. Proc, 1994, vol. 350, pp. 111–18.

    CAS  Google Scholar 

  15. P.R. Smith, C.G. Rhodes, and W.C. Revelos: inInterfaces in Metal- Ceramic Composites, R.Y. Lin, R.J. Arsenault, G.P. Martins, and S.G. Fishman, eds., TMS, Warrendale, PA, 1990, pp. 35–58.

    Google Scholar 

  16. C.G. Rhodes:Mater. Res. Soc. Symp. Proc, 1992, vol. 273, pp. 17- 29.

    CAS  Google Scholar 

  17. S.L. Semiatin, R.L. Goetz, and W.R. Kerr:Intermetallic Matrix Composites II, Materials Research Society Symposia Proceedings, D.B. Miracle, D.L. Anton, and J.A. Graves, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 273, pp. 351–64.

    Google Scholar 

  18. C.C. Bampton and J.A. Graves:Intermetallic Matrix Composites II, Materials Research Society Symposia Proceedings, D.B. Miracle, D.L. Anton, and J.A. Graves, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 273, pp. 366–76.

    Google Scholar 

  19. F.H. Froes and H.B. Bomberger:JOM, 1985, vol. 37, pp. 28–37.

    CAS  Google Scholar 

  20. W.S. Johnson: inFatigue of Advanced Materials, R.O. Ritchie, R.H. Dauskardt, and B.N. Cox, eds., MCE Publications, Birmingham, England, 1991, pp. 357–77.

    Google Scholar 

  21. S. Jansson, H.E. Deve, and A.G. Evans:Metall. Trans. A, 1991, vol. 22A, pp. 2975–84.

    CAS  Google Scholar 

  22. M. Khobaib: University of Dayton Research Institute, Dayton, OH, private communication, 1993.

  23. D.P. DeLuca, B.A. Cowles, F.K. Haake, and K.P. Holland: U.S. Air Force Report No. WRDC-TR-89-4136 (NTIS Report No. AD- A226737), Wright-Patterson Air Force Base, OH, Feb. 1990, p. 284.

  24. J. Fisher: Pratt and Whitney Aircraft, West Palm Beach, FL, private communication, Aug. 1993.

  25. T. Nicholas and S.M. Russ:J. Mater. Sci. Eng., 1992, vol. A153, pp. 514–19.

    Article  CAS  Google Scholar 

  26. S.M. Russ and D.G. Hanson: inFATIGUE ’93, Vol. II, J.-P. Bailon and I.J. Dickson, eds., Engineering Materials Advisory Services, Ltd., 339, Halesowen Road, Cradley Heath, Warley, West Midlands B64 6PH, United Kingdom, 1993, pp. 969–74.

    Google Scholar 

  27. M.G. Castelli, P.A. Bartolotta, and J.R. Ellis: inComposite Materials: Testing and Design (Tenth Volume), ASTM STP 1120, G.C. Grimes, ed., ASTM, Philadelphia, PA, 1991, pp. 70–86.

    Google Scholar 

  28. T. Nicholas, S.M. Russ, R.W. Neu, and N. Schehl: inLife Prediction Methodology for Titanium Matrix Composites, ASTM STP 1253, W.S. Johnson, J.M. Larsen, and B.N. Cox, eds., ASTM, Philadelphia, PA, 1995, in press.

    Google Scholar 

  29. S.M. Russ, T. Nicholas, M. Bates, and S. Mall: inFailure Mechanisms in High Temperature Composite Materials, G.K. Haritos, G. Newaz, and S. Mall, eds., ASME, New York, NY, 1991, AD-vol. 22/AMD-vol. 122, pp. 37–43.

    Google Scholar 

  30. J.R. Jira and J.M. Larsen: inFATIGUE ’93, Vol. II, J.-P. Bailon and I.J. Dickson, eds., Engineering Materials Advisory Services, Ltd., 339, Halesowen Road, Cradley Heath, Warley, West Midlands B64 6PH, United Kingdom, 1993, pp. 1085–90.

    Google Scholar 

  31. R. John, J.R. Jira, J.M. Larsen, and N.E. Ashbaugh: inFATIGUE ’93, Vol. II, J.-P. Bailon and I.J. Dickson, eds., Engineering Materials Advisory Services, Ltd., 339, Halesowen Road, Cradley Heath, Warley, West Midlands B64 6PH, United Kingdom, 1993, pp. 1091–96.

    Google Scholar 

  32. J.M. Larsen, J.R. Jira, R. John, and N.E. Ashbaugh: inLife Prediction Methodology for Titanium Matrix Composites, ASTM STP 1253, W.S. Johnson, J.M. Larsen, and B.N. Cox, eds., ASTM, Philadelphia, PA, 1995.

    Google Scholar 

  33. D. Blatt, P. Karpur, D.A. Stubbs, and T. Matikas:Scripta Metall. Mater., 1993, vol. 29 (6), pp. 851–56.

    Article  CAS  Google Scholar 

  34. D. Blatt, J.R. Jira, and J.M. Larsen:Scripta Metall. Mater., 1995, vol. 33, pp. 939–944.

    Article  CAS  Google Scholar 

  35. J.M. Larsen, J.R. Jira, R. John, and D. Blatt:Mater. Sci. Eng, 1995, in press.

  36. M. Khobaib:Proc. American Society for Composites, S.S. Sternstein, ed., Technomic Publishing, Lancaster, PA, 1991, pp. 638–47.

    Google Scholar 

  37. B.R. Kortyna and N.E. Ashbaugh: U.S. Air Force Report No. WL- TR-91-4020 (NTIS Report No. AD-B154636), P.R. Smith, S.J. Balsone, and T. Nicholas, eds., Wright-Patterson Air Force Base, OH, Feb. 1991, pp. 467–83.

  38. M.G. Fontana and N.D. Green:Corrosion Engineering, McGraw-Hill, New York, NY, 1978, p. 179.

    Google Scholar 

  39. D. Coker, N.E. Ashbaugh, and T. Nicholas: inThermomechanical Fatigue Behavior of Materials, ASTM STP 1186, H. Sehitoglu,ed., ASTM, Philadelphia, PA, 1993, pp. 50–69.

    Google Scholar 

  40. S.M. Russ:Metall. Trans. A, 1990, vol. 21A, pp. 1595–1602.

    CAS  Google Scholar 

  41. W.C. Revelos and I. Roman:Intermetallic Matrix Composites II, Materials Research Society Symposia Proceedings, D.B. Miracle, D.L. Anton, and J.A. Graves, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 273, pp. 53–58.

    Google Scholar 

  42. W.C. Revelos and P.R. Smith:Metall. Trans. A, 1992, vol. 23A, pp. 587–95.

    CAS  Google Scholar 

  43. P.K. Brindley, R.A. MacKay, and P.A. Bartolotta: U.S. Air Force Report No. WL-TR-91-4020 (NTIS Report No. AD-B154636), P.R. Smith, S.J. Balsone, and T. Nicholas, eds., Wright-Patterson AFB, OH, 1991, pp. 484-96.

  44. W.C. Revelos, J.W. Jones, and E. Dolley:Metall. Trans. A, 1995, vol. 26A, pp. 1167–81.

    CAS  Google Scholar 

  45. W.M. Parris and P.J. Bania: inTitanium ’92, Science and Technology, F.H. Froes and I. Caplan, eds., TMS, Warrendale, PA, 1993, pp. 153- 60.

    Google Scholar 

  46. S. Mall, D.G. Hanson, T. Nicholas, and S.M. Russ: inConstitutive Behavior of High Temperature Composites, B.S. Majumdar, G.M. Newaz, and S. Mall, eds., ASME New York, NY, 1992, MD-vol. 41, pp. 91–106.

    Google Scholar 

  47. S. Ashley:Mech. Eng, 1991, vol. 113, pp. 49–52.

    Google Scholar 

  48. R.G. Rowe:Adv. Mater. Processes, 1992, vol. 141, pp. 33–35.

    CAS  Google Scholar 

  49. P.R. Smith, J.A. Graves, and C.G. Rhodes:Intermetallic Matrix Composites II, Material Research Society Symposia Proceedings, D.B. Miracle, D.L. Anton, and J.A. Graves, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 273, pp. 43–52.

    Google Scholar 

  50. J.A. Graves, P.R. Smith, and C.G. Rhodes:Intermetallic Matrix Composites II, Materials Research Society Symposia Proceedings, D.B. Miracle, D.L. Anton, and J.A. Graves, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 273, pp. 31–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Creep and Fatigue in Metal Matrix Composites” at the 1994 TMS/ASM Spring meeting, held February 28–March 3, 1994, in San Francisco, California, under the auspices of the Joint TMS-SMD/ASM-MSD Composite Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, J.M., Russ, S.M. & Jones, J.W. An evaluation of fiber-reinforced titanium matrix composites for advanced high-temperature aerospace applications. Metall Mater Trans A 26, 3211–3223 (1995). https://doi.org/10.1007/BF02669450

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669450

Keywords

Navigation