Skip to main content
Log in

Growth of slip bands during fatigue of 6061-T6 aluminum

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The growth of persistent slip bands (psb), the initial surface manifestation of metal fatigue, was measured with a photoelectron microscope equipped with a fatigue stage. Once the psb had been identified and located, the specimen was subjected to a final detailed examination by scanning electron microscopy. In 6061-T6 aluminum psb initiated within a grain, usually at the site of an inclusion. The psb appeared as a small extrusion and elongated across the grain by the sequential addition of new extrusions. As the psb elongated, the initial extrusions became more pronounced and eventually microcracks developed. Under constant amplitude loading, the rate of elongation of a psb in polycrystalline material varied inversely as the length, whereas in a large grain specimen the rate remained constant. This difference is attributed to the constraints imposed upon a small grain by the surrounding material. The growth laws can be accounted for in terms of a simple two phase model in which the psb has a much lower yield stress than the matrix of the grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See,e.g., review by C. Laird and D. J. Duquette: inCorrosion Fa- tigue: Chemistry, Mechanics, and Microstructure, O. F. Devereux, A. J. McEvily, and R. W. Staehle, eds., National Association of Corrosion Engineers, Houston, TX, 1971, pp. 88–117.

    Google Scholar 

  2. P. J.E. Forsyth:The Physical Basis of Metal Fatigue, Blackie and Son, Ltd., London, 1969.

    Google Scholar 

  3. J. Lee and C. Laird:Phil. Mag. A, 1983, vol. 47, pp.579–97.

    Article  CAS  Google Scholar 

  4. H. Mughrabi:Scripta Metall., 1979, vol. 13, pp. 479–84.

    Article  CAS  Google Scholar 

  5. H. Mughrabi, R. Wang, K. Differt, and U. Essmann: inFatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage, J. Lankford, D. L. Davidson, W. L. Morris, and R. P. Wei, eds., American Society for Testing and Materials, Philadelphia, PA, STP 811, 1983, pp. 5–45.

    Chapter  Google Scholar 

  6. W. J. Baxter: inFundamental Questions and Critical Experiments on Fatigue, J. T. Fong and R. P. Wei, eds., American Society for Testing and Materials, Philadelphia, PA, STP 924, in press.

  7. W. J. Baxter and S.R. Rouze:Metall. Trans. A, 1976, vol. 7A, pp. 647–54.

    Article  CAS  Google Scholar 

  8. W. J. Baxter:Treatise on Materials Science and Technology, vol. 19,Experimental Methods, Part B, Academic Press, New York, NY, 1983, pp. 1–66.

    Google Scholar 

  9. See review by P. Lukas and M. Klesnil: inCorrosion Fatigue: Chem- istry, Mechanics, and Microstructure, O. F. Devereux, A. J. McEvily, and R. W. Staehle, eds., National Association of Corrosion Engineers, Houston, TX, 1971, pp. 118–32.

    Google Scholar 

  10. R. Wang, H. Mughrabi, S. McGovern, and M. Rapp:Materials Science and Engineering, 1984, vol. 65, pp. 219–33.

    Article  CAS  Google Scholar 

  11. E. E. Laufer and W. N. Roberts:Phil. Mag., 1966, vol. 14, pp. 65–78.

    Article  CAS  Google Scholar 

  12. J.R.T. Lloyd, P. Caceres, and B. Ralph:Scripta Metall., 1985, vol.19, pp. 1475–80.

    Article  CAS  Google Scholar 

  13. J. Polak,T. Lepisto, and P. Kettunen: Mater.Sci. Eng., 1985, vol. 74, pp. 85–91.

    CAS  Google Scholar 

  14. W. Vogel, M. Wilhelm, and V. Gerold:Acta Metall., 1982, vol. 30, pp. 21–30.

    Article  CAS  Google Scholar 

  15. C. A. Stubbington:Acta Metall., 1964, vol. 12, pp. 931–39.

    Article  CAS  Google Scholar 

  16. S. P. Lynch: inFatigue Mechanisms, J. T. Fong, ed., American Soci- ety for Testing and Materials, Philadelphia, PA, STP 675, 1979, pp. 174–213.

    Chapter  Google Scholar 

  17. W. Vogel, M. Wilhelm, and V. Gerold:Acta Metall., 1982, vol. 30, pp. 31–35.

    Article  CAS  Google Scholar 

  18. J. N. Vincent and L. Remy: Proc. 4th European Conference on Frac- ture, Leoben, Austria, K. L. Maurer and F. E. Matzer, eds., Engineer- ing Materials Advisory Services Ltd., 1982, pp. 353-57.

  19. O. B. Pedersen, K. V. Rasmussen, and A. T. Winter:Acta Metall 1982, vol. 30, pp. 57–62.

    Article  CAS  Google Scholar 

  20. H. Mughrabi:Acta Metall., 1983, vol. 31, pp. 1367–79.

    Article  CAS  Google Scholar 

  21. J. Gurland:Mater. Sci. Eng., 1979, vol. 40, pp. 59–71.

    Article  CAS  Google Scholar 

  22. C.B. Eckstein and J.R.C. Guimaraes:J. Mat. Sci., 1984, vol. 19 pp. 3043–48.

    Article  CAS  Google Scholar 

  23. M. Klesnil and P. Lukas:Fatigue of Metallic Materials Elsevier New York, NY, 1980, ch. 3.

    Google Scholar 

  24. N. Thompson, N. Wadsworth, and N. Louat:Phil. Mag., 1956, vol. 1, pp. 113–26.

    Article  CAS  Google Scholar 

  25. H. Mughrabi:Mater. Sci. Eng., 1978, vol. 33, pp. 207–23.

    Article  CAS  Google Scholar 

  26. P. Neumann: inPhysical Metallurgy, R. W. Cahn and P. Haasen, eds., North Holland, Amsterdam, 1983, p. 1565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, W.J., McKinney, T.R. Growth of slip bands during fatigue of 6061-T6 aluminum. Metall Trans A 19, 83–91 (1988). https://doi.org/10.1007/BF02669817

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669817

Keywords

Navigation