Skip to main content
Log in

Effect of sulfur removal on Al2O3 scale adhesion

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

If the role of reactive element dopants in producing A12O3 scale adhesion on NiCrAl alloys is to getter sulfur and prevent interfacial segregation, then eliminating sulfur from undoped alloys should also produce adherence. Four experiments successfully produced scale adhesion by sulfur removal alone. (1) Repeated oxidation and polishing of a pure NiCrAl alloy lowered the sulfur content from 10 to 2 parts per million by weight (ppmw), presumably by removing the segregated interfacial layer after each cycle. Total scale spallation changed to total retention after 13 such cycles, with no changes in the scale or interfacial morphology. (2) Thinner samples became adherent after fewer oxidation polishing cycles because of a more limited supply of sulfur. (3) Spalling in subsequent cyclic oxidation tests of samples from experiment (1) was a direct function of the initial sulfur content. (4) Desulfurization to 0.1 ppmw levels was accomplished by annealing melt-spun foil in 1 arm H2. These foils produced oxidation weight change curves for 500 1-hour cycles at 1100 °C similar to those for Y- or Zr-doped NiCrAl. The transition between adherent and nonadherent behavior was modeled in terms of sulfur flux, sulfur content, and sulfur segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Smialek and R. Browning: inHigh Temperature Materials Chemistry HI, Z.A. Munir and D. Cubicciotti, eds., Electrochemical Society, Pennington, NJ, 1986, pp. 258–72; also, NASA TM-87168.

    Google Scholar 

  2. D.P. Whittle and J. Stringer:Phil. Trans. R. Soc. London A, 1980, vol. 295, pp. 309–29.

    Article  CAS  Google Scholar 

  3. A.W. Funkenbusch, J.G. Smeggil, and N.S. Bornstein:Metall. Trans. A, 1985, vol. 16A, pp. 1164–66.

    CAS  Google Scholar 

  4. J.G. Smeggil, A.W. Funkenbusch, and N.S. Bornstein:Metall. Trans. A, 1986, vol. 17A, pp. 923–32.

    CAS  Google Scholar 

  5. J.L. Smialek:Oxidation of Metals and Associated Mass Transport, M.A. Dayananda, S.J. Rothman, and W.E. King, eds., TMS-AIME, Warrendale, PA, 1987, pp. 297–313.

    Google Scholar 

  6. J.L. Smialek:Corrosion and Particle Erosion at High Temperatures, V. Srinivasan and K. Vedula, eds., TMS-AIME, Warrendale, PA, 1989, pp. 425–57.

    Google Scholar 

  7. A.B. Anderson, S.P. Mehandru, and J.L. Smialek:J. Electrochem Soc, 1985, vol. 32, pp. 1695–1701.

    Article  Google Scholar 

  8. L.A. Larson, M. Prutton, H. Poppa, and J.L. Smialek:J. Vac. Sci. Technol., 1982, vol. 20, pp. 1403–05.

    Article  CAS  Google Scholar 

  9. M.M. El Gomati, C.G.H. Walker, D.C. Peacock, M. Prutton, H.E. Bishop, R.M.H. Hawes, and J. Smialek:Surf. Sci., 1985, vol. 152-153, pp. 917–24.

    Article  Google Scholar 

  10. M.M. El Gomati, C. Walker, D.C. Peacock, and M. Prutton:Corros. Sci., 1985, vol. 25, pp. 351–59.

    Article  Google Scholar 

  11. J.G. Smeggil:Mater. Sci. Eng., 1987, vol. 87, pp. 261–65.

    Article  CAS  Google Scholar 

  12. J.L. Smialek:Metall. Trans. A, 1987, vol. 18A, pp. 164–67.

    CAS  Google Scholar 

  13. D.G. Lees:Oxid. Met., 1987, vol. 27, pp. 75–81.

    Article  CAS  Google Scholar 

  14. D.R. Sigler:Oxid. Met., 1988, vol. 29, pp. 23–43.

    Article  CAS  Google Scholar 

  15. R.J. Hussey, P. Papaiacovou, D.F. Mitchell, and M.J. Graham: inCorrosion and Particle Erosion at High Temperatures, TMS-AIME, Warrendale, PA, 1989, pp. 567–82.

    Google Scholar 

  16. B.K. Tubbs and J.L. Smialek: inCorrosion and Particle Erosion at High Temperatures, TMS-AIME, Warrendale, PA, 1989, pp. 459–86.

    Google Scholar 

  17. T.P. Herbell:Int. J. Powder Metall., 1972, vol. 8, pp. 29–41.

    CAS  Google Scholar 

  18. J.K. Tien and F.S. Pettit:Metall. Trans., 1972, vol. 3, pp. 1587–99.

    Article  CAS  Google Scholar 

  19. C.S. Giggins and F.S. Pettit: ARL-TR-75-0234, PWA-5364, Pratt and Whitney Aircraft, East Hardford, CT, 1972; also available NTIS as No. AD-A024104.

  20. K.P.R. Reddy, J.L. Smialek, and A.R. Cooper:Oxid. Met., 1982, vol. 17, pp. 429–49.

    Article  CAS  Google Scholar 

  21. J.L. Smialek and R. Gibala: inHigh Temperature Corrosion, NACE-6, R.A. Rapp, ed., NACE, Houston, TX, 1983, pp. 274–83.

    Google Scholar 

  22. J.L. Smialek and R. Gibala:Metall. Trans. A, 1983, vol. 14A, pp. 2143–61.

    CAS  Google Scholar 

  23. K.L. Luthra and C.L. Briant:Oxid. Met., 1988, vol. 30, pp. 257–59.

    Article  CAS  Google Scholar 

  24. J.G. Smeggil, A.W. Funkenbush, and N.S. Bornstein:Thin Solid Films, 1984, vol. 119, pp. 327–35.

    Article  CAS  Google Scholar 

  25. J.G. Smeggil, A.W. Funkenbusch, and N.S. Bornstein:High Temp. Sci., 1985, vol. 20, pp. 163–82.

    CAS  Google Scholar 

  26. T. Miyahara, K. Stolt, D.A. Reed, and H.K. Birnbaum:Scripta Metall., 1985, vol. 19, pp. 117–21.

    Article  CAS  Google Scholar 

  27. C.G.H. Walker and M.M. El Gomati:Appl. Surf. Sci., 1988/1989, vol. 35, pp. 164–72.

    Article  CAS  Google Scholar 

  28. D. McClean:Grain Boundaries in Metals, Clarendon Press, Oxford, United Kingdom, 1957, pp. 126–29.

    Google Scholar 

  29. G.H. Geiger and D.R. Poirier:Transport Phenomena in Metallurgy, Addison-Wesley, Reading, MA, 1973, pp. 486–87.

    Google Scholar 

  30. P. Marcus and J. Oudar: inFundamental Aspects of Corrosion Protection by Surface Modification, E. McCafferty, C.R. Clayton, and J. Oudar, eds., Electrochemical Society, Pennington, NJ, 1984, pp. 173–93.

    Google Scholar 

  31. A. Steiner and K.L. Komarek:Trans. TMS-AIME, 1964, vol. 230, pp. 786–90.

    CAS  Google Scholar 

  32. K.L. Luthra and C.L. Briant:Oxid. Met., 1986, vol. 26, pp. 397–416.

    Article  CAS  Google Scholar 

  33. C.L. Briant and K.L. Luthra:Metall. Trans. A, 1988, vol. 19A, pp. 2099–2108.

    CAS  Google Scholar 

  34. R. Browning, C. Park, F.A. Marks, and J.L. Smialek: NASA Ames Research Center, Moffett Field, CA, unpublished work, 1984; data presented in Reference 1.

  35. F. Ferhat, D. Roptin, and G. Saindrenan:Scripta Metall., 1988, vol. 22, pp. 223–27.

    Article  CAS  Google Scholar 

  36. B. Ladna and H.K. Birnbaum:Acta Metall., 1988, vol. 36, pp. 745–55.

    Article  CAS  Google Scholar 

  37. J.G. Smeggil and G.G. Peterson:Oxid. Met., 1988, vol. 29, pp. 103–19.

    Article  CAS  Google Scholar 

  38. J.L. Smialek: inHigh Temperature Materials Chemistry IV, Z. A. Munir, D. Cubicciotti, and H. Tagawa, eds., Electrochemical Society, Pennington, NJ, 1988, pp. 241–53.

    Google Scholar 

  39. J.G. Smeggil, E.L. Paradis, A.J. Shuskus, and N.S. Bornstein:J. Vac. Sci. Technol. A, 1985, vol. 3A, pp. 2569–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smialek, J.L. Effect of sulfur removal on Al2O3 scale adhesion. Metall Trans A 22, 739–752 (1991). https://doi.org/10.1007/BF02670297

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670297

Keywords

Navigation