Skip to main content
Log in

Classification of fatigue crack growth behavior

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A self-consistent theory has been developed to account for the variation in fatigue crack growth rates with load ratio,R, without reference to crack closure concepts. The theory states that (a) for an unambiguous description of cyclic damage, two loading parameters are required; (b) consequently, there are two thresholds corresponding to each parameter that must be satisfied for a crack to grow; (c) these two thresholds are intrinsic and are independent of specimen geometry; (d) a fundamental threshold curve can be developed that is independent of test methods defining these two thresholds from the asymptotic values, and last; (e) the two thresholds vary with the degree of slip planarity, microstructure, and environment. Based on these new concepts, we have classified the entire fatigue crack growth behavior into five different classes using the experimental ΔK th -R data. The characteristic feature of each class is discussed, and the supporting examples of materials behavior are provided. This classification could provide a basis for understanding the synergistic effects of mechanical and chemical driving forces and microstructure contributing to fatigue crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Vasudévan, K. Sadananda, and N. Louat:Scripta Metall. Mater., 1992, vol. 27, p. 1673.

    Article  Google Scholar 

  2. A.K. Vasudévan, K. Sadananda, and N. Louat:Scripta Metall. Mater., 1993, vol. 28, p. 65.

    Article  Google Scholar 

  3. A.K. Vasudévan, K. Sadananda, and N. Louat:Scripta Metall. Mater., 1993, vol. 28, p. 837.

    Article  Google Scholar 

  4. A.K. Vasudévan, K. Sadananda, and N. Louat: inFatigue ’93, S.-P. Bailon and J.I. Dickson, eds., Engineering Materials Advisory Services, Warley, United Kingdom, 1993, vol. I, p. 565.

    Google Scholar 

  5. K. Sadananda, N. Louat, and A.K. Vasudévan: inFatigue ’93, J.-P. Bailon and J.I. Dickson eds., Engineering Materials Advisory Services, Warley, United Kingdom, 1993, vol. I, p. 571.

    Google Scholar 

  6. K. Sadananda and A.K. Vasudévan: inAspects of High Temperature Deformation & Fracture in Crystalline Materials, Y. Hosoi, H. Yoshinaga, H. Oikawa, and K. Maruyama, eds., The Japan Institute of Metals, Nagoya, Japan, 1993, p. 551.

    Google Scholar 

  7. N. Louat, K. Sadananda, M. Duesbery, and A.K. Vasudévan:tMetall. Trans. A, 1993, vol. 24A, pp. 2225–32.

    Article  Google Scholar 

  8. K. Sadananda and A.K. Vasudévan: ASTM STP-1220, 1995, in press.

  9. A.K. Vasudévan, K. Sadananda, and N. Louat:Mater. Sci. Eng., 1994, vol. A188, pp. 1–22.

    Google Scholar 

  10. R.A. Schmidt and P.C. Paris: ASTM STP-536, 1973, p. 79.

  11. A.K. Vasudévan, K. Sadananda, and N. Louat: inInnovation & Technology Transfer for Corrosion Control, 11th Int. Corrosion Conf. AIM, Milan, Italy, 1990, vol. 3, p. 3.231.

  12. S. Suresh:Fatigue of Materials, Cambridge University Press, Cambridge, United Kingdom, 1991.

    Google Scholar 

  13. P. Woolin and J.E. King: private communication, 1991.

  14. C.J. Beevers:Fatigue Thresholds, Proc. 1st Int. Conf. on Fatigue Threshold, J. Blacklund, A.F. Blom, and C.J. Beevers, eds., Engineering Materials Advisory Services, Warley, United Kingdom, 1982, vol. I, p. 257.

    Google Scholar 

  15. A.T. Stewart:Eng. Fract. Mech., 1980, vol. 13, p. 463.

    Article  CAS  Google Scholar 

  16. J. Petit and J.L. Mailard:Scripta Metall., 1980, vol. 14, p. 163.

    Article  CAS  Google Scholar 

  17. H. Doker and M. Peters:Fatigue Thresholds, Proc. 2nd Int. Conf. on Fatigue Threshold, C.J. Beevers, ed., Engineering Materials Advisory Services, Warley, United Kingdom, 1984, p. 275.

    Google Scholar 

  18. K. Tanaka: ASTM STP-1020, 1989, p. 151.

  19. C. Masuda, H. Sumiyoshi, M. Kosuge, A. Ohta, and S. Nishijima:Int. J. Fatigue, 1987, vol. 9, p. 223.

    Article  Google Scholar 

  20. M.C. Lafarie-Frenot and C. Gasc:Fatigue Eng. Mater. Structs., 1983, vol. 6, p. 329.

    Article  CAS  Google Scholar 

  21. J. Petit, P. Renaud, and P. Violan:Proc. ECF-4 on Fracture, K.L. Maurer and F.E. Matzer, eds., Engineering Materials Advisory Services, Warley, United Kingdom, 1982, vol. 2, p. 426.

    Google Scholar 

  22. B.R. Kirby and C.J. Beevers:Fatigue Eng. Mater. Structs., 1979, vol. 1, p. 203.

    Article  CAS  Google Scholar 

  23. S. Suresh, A.K. Vasudevan, and P.E. Bretz:Metall. Trans. A, 1984, vol. 15A, pp. 369–79.

    CAS  Google Scholar 

  24. H. Kemper, B. Weiss, and R. Stickler:Eng. Fract. Mech., 1989, vol. 32, p. 591.

    Article  Google Scholar 

  25. R.J. Cook, P.E. Irving, G.S. Booth, and C.J. Beevers:Eng. Fract. Mech., 1975, vol. 7, p. 69.

    Article  Google Scholar 

  26. K. Jerram and E.K. Priddle:J. Mech. Eng. Sci., 1973, vol. 15, p. 271.

    Google Scholar 

  27. J. Mautz and V. Weiss: ASTM STP-601, 1976, p. 154.

  28. E.K. Priddle:Scripta Metall., 1978, vol. 12, p. 49.

    Article  CAS  Google Scholar 

  29. R.J. Cooke and C.J. Beevers:Mater. Sci. Eng., 1974, vol. 13, p. 201.

    Article  CAS  Google Scholar 

  30. N.E. Frost:J. Iron Steel Inst., 1967, vol. 205, p. 206.

    CAS  Google Scholar 

  31. S. Suresh, G.F. Zaminski, and R.O. Ritchie:Metall. Trans. A, 1981, vol. 12A, pp. 1435–43.

    Google Scholar 

  32. J. Denk, O.E. Lepik, and G. Ebi: inFatigue ’93, J.-P. Bailon and J.I. Dickson, eds., Engineering Materials Advisory Services, Warley, United Kingdom, 1993, vol. 3, p. 1797.

    Google Scholar 

  33. J.A. Todd, L. Chen, E.Y. Yankov, and H. Tao:J. Offshore Mechanics and Arctic Eng., Trans. ASME, 1993, vol. 115, p. 154.

    Article  Google Scholar 

  34. A. Ueno, H. Kishimoto, H. Kawamoto, and M. Asakura:Eng. Fract. Mech., 1991, vol. 40, p. 913.

    Article  Google Scholar 

  35. L. Priutt: Ph.D. Thesis, Brown University, Providence, RI, 1993.

    Google Scholar 

  36. N.J. Mills and N. Walker:Polymer, 1976, vol. 17, p. 335.

    Article  CAS  Google Scholar 

  37. W. Mai and J.G. Williams:J. Mater. Sci., 1979, vol. 14, p. 1933.

    Article  CAS  Google Scholar 

  38. S. Arad, J.C. Radon, and L.E. Culver:J. Mech. Eng. Sci., 1971, vol. 13, p. 75.

    Google Scholar 

  39. L. Pruitt, A.K. Vasudévan, and K. Sadananda: 1995, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudévan, A.K., Sadananda, K. Classification of fatigue crack growth behavior. Metall Mater Trans A 26, 1221–1234 (1995). https://doi.org/10.1007/BF02670617

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670617

Keywords

Navigation