Skip to main content
Log in

Quantifying recrystallization nucleation and growth kinetics of cold-worked copper by microstructural analysis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural evolution data describing the recrystallization of cold-worked copper at 394 K (121 °C) were obtained by quantitative metallography using scanning electron microscopy and electron backscattered pattern analysis. Using the microstructural path method (MPM), a new analytical representation of the microstructure was devised that emulated all the measurements and successfully explained why simpler representations failed to adequately describe the kinetics of recrystallization in copper. Saturation of preferentially located nucleation sites such as at deformation bands, grain boundaries, etc., where recrystallized grains may cluster in planar arrays before the deformed volume is completely consumed, and time-dependent growth rates matched fully the kinetic behavior of copper during recrystallization. The kinetic behavior of individual texture components (random and cube + cube twin) was also delineated, experimentally and analytically. Precise matching of the analytical representation of the microstructure to experiment allowed calculation of nucleation and growth parameters. These showed that the cube + cube twin grains nucleated at a faster rate than the random grains, that site saturation occurred sooner for the cube + cube twin grains, and that cube + cube twin grains grew at rates about 1.5 times faster than the random grains. The calculations suggested that as recrystallization approached completion, the number of random grains slightly outnumbered the cube + cube twin grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Kolmogorov:Izv. Akad. Nauk USSR, Ser. Mathemat., 1937, vol. 1 (3), pp. 355–59.

    Google Scholar 

  2. W.A. Johnson and R.F. Mehl:Trans. AIME, 1939, vol. 135, pp. 416- 30.

    Google Scholar 

  3. M. Avrami:J. Chem. Phys., 1939, vol 7, pp. 1103–09 ;J. Chem. Phys., 1940, vol. 8, pp. 212-24.

    Article  CAS  Google Scholar 

  4. H.W. Hesselbarth and I.R. Gobel:Acta Metall. Mater., 1991, vol. 39, pp. 2135–43.

    Article  CAS  Google Scholar 

  5. P. Kruger and E. Woldt:Acta Metall. Mater., 1992, vol. 40, pp. 2933- 42.

    Google Scholar 

  6. K.-P. Huang and W. Form:Z. Metallkd., 1989, vol. 80, pp. 686–91.

    CAS  Google Scholar 

  7. B. Hutchinson, S. Jonsson, and L. Ryde:Scripta Metall., 1989, vol. 23, pp. 671–76.

    Article  CAS  Google Scholar 

  8. H.W. Hesselbarth, L. Kaps, and F. Haessner:Mater. Sci. Forum, 1993, vol. 5. 113-115, pp. 317–22.

    CAS  Google Scholar 

  9. J.T. Michalak and W.R. Hibbard, Jr.:Trans. AIME, 1957, vol. 209, pp. 101–06.

    Google Scholar 

  10. E.A. Loria, K. Detert, and J.G. Morris:Acta Metall, 1965, vol. 13, pp. 929–31.

    Article  CAS  Google Scholar 

  11. C.W. Price:Scripte Metall., 1985, vol. 19, pp. 669–73.

    Article  CAS  Google Scholar 

  12. R.D. Doherty, A.R. Rollett, and DJ. Srolovitz:Annealing Processes- Recovery, Recrystallization and Grain Growth, N. Hansen, D. Juul Jensen, T. Leffers, and B. Ralph, eds., Risø National Laboratory, Roskilde, Denmark, 1986, pp. 53–67.

    Google Scholar 

  13. C.W. Price:Scripta Metall, 1989, vol. 23, pp. 1273–76.

    Article  CAS  Google Scholar 

  14. A.D. Rollett, DJ. Srolovitz, R.D. Doherty, and M.P. Anderson:Acta Metall, 1989, vol. 37, pp. 627–39.

    Article  CAS  Google Scholar 

  15. T. Leffers:Annealing Processes-Recovery, Recrystallization and Grain Growth, N. Hansen, D. Juul Jensen, T. Leffers, and B. Ralph, eds., Riso National Laboratory, Roskilde, Denmark, 1986, pp. 427–36.

    Google Scholar 

  16. R.A. Vandermeer and B.B. Rath:Metall. Trans. A, 1989, vol. 20A, pp. 391–401 ;Materials Architecture, J.B. Bilde-Sørensen, N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, and O.B. Pedersen, eds., Rise National Laboratory, Roskilde, Denmark, 1989, pp. 589-99.

    CAS  Google Scholar 

  17. R.A. Vandermeer, R.A. Masumura, and B.B. Rath:Acta Metall. Mater., 1991, vol. 39, pp. 383–89.

    Article  CAS  Google Scholar 

  18. R.A. Vandermeer and R.A. Masumura:Acta Metall. Mater., 1991, vol. 40, pp. 877–886.

    Google Scholar 

  19. R.A. Vandermeer:Scripta Metall Mater., 1992, vol. 27, pp. 1563–68.

    Article  CAS  Google Scholar 

  20. R.A. Vandermeer and D. Juul Jensen:Acta Metall. Mater., 1994, vol. 42, pp. 2427–36.

    Article  CAS  Google Scholar 

  21. E. Woldt and D. Juul Jensen:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 0000–00.

    CAS  Google Scholar 

  22. G. Baro and H. Gleiter:Z. Metallkd., 1972, vol. 63, pp. 661–63.

    Google Scholar 

  23. A. Berger, PJ. Wilbrandt, F. Ernst, U. Klement, and P. Haasen:Progr. Mater. Sci., 1988, vol. 32, pp. 1–95.

    Article  CAS  Google Scholar 

  24. R.A. Vandermeer and D. Juul Jensen:Scripta Metall, 1994, vol. 30, pp. 1575–80.

    Article  CAS  Google Scholar 

  25. R.A. Vandermeer and P. Gordon:Trans. TMS-AIME, 1959, vol. 215, pp. 577–88.

    CAS  Google Scholar 

  26. A.A. Ridha and W.B. Hutchinson:Acta Metall, 1982, vol. 30, pp. 1929–39.

    Article  CAS  Google Scholar 

  27. BJ. Duggan and C.S. Lee:Scripta Metall. Mater., 1992, vol. 27, pp. 1503–07.

    Article  CAS  Google Scholar 

  28. BJ. Duggan, K. Lucke, G. Kohlhoff, and C.S. Lee:Mater. Sci. Forum, 1993, vols. 113-115, pp. 121–26.

    Article  CAS  Google Scholar 

  29. B. Bay, N. Hansen, and D. Kuhlmann-Wilsdorf:Mater. Sci. Eng., 1992, vol. A158, pp. 139–46.

    CAS  Google Scholar 

  30. J.W. Cahn:Acta Metall, 1956, vol. 4, pp. 449–59.

    Article  CAS  Google Scholar 

  31. J.W. Cahn and W.C. Hagel: inDecomposition of Austenite by Diffusional Processes, Z.D. Zackey and H.I. Aaronson, eds., Interscience Publ, New York, NY, 1960, pp. 131–96;Acta Metall, 1963, vol. 11, pp. 561-74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandermeer, R.A., Jensen, D.J. Quantifying recrystallization nucleation and growth kinetics of cold-worked copper by microstructural analysis. Metall Mater Trans A 26, 2227–2235 (1995). https://doi.org/10.1007/BF02671238

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02671238

Keywords

Navigation