Skip to main content
Log in

The role of mechanical properties in low-stress fatigue crack propagation

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

An experimental investigation was undertaken to study the relationship between mechanical properties and low stress fatigue crack propagation. Attention was focused on the “fatigue” or “reversed plastic zone” at the crack tip, since it was felt that material properties in this region were of prime importance in the crack propagation process. An effort was made to simulate this region through fully reversed strain-cycling tests on tensile specimens. Mechanical properties obtained from a number of materials before and after strain cycling were correlated with crack propagation data from the same materials. Evidence indicated that while monotonic tensile properties are inadequate for correlation purposes, the cyclic strain-hardening coefficient, the cyclic yield strength, and the elastic modulus appear to be important parameters. This was felt to be an indication of the importance of strain cycling in the reversed plastic zone in influencing the rate-governing mechanisms in fatigue crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Head:Phil. Mag., 1953, vol. 44, p. 925.

    Article  Google Scholar 

  2. N. E. Frost and D. S. Dugdale:J Mech. Phys. Sol., 1958, vol. 6, p. 92.

    Article  Google Scholar 

  3. H. W. Liu:Trans. ASME, 1961, vol. 83D, p. 23.

    Article  Google Scholar 

  4. H. W. Liu:Trans. ASME, 1963, vol. 85D, p. 116.

    Article  Google Scholar 

  5. J. Weertman:Int.J. Fract. Mech., 1966, vol. 2, p. 460.

    Article  Google Scholar 

  6. A. J. McEvily and T. L. Johnston:Proc. Int. Conf. Fract, Sendai, Japan, 1966, p. 515.

  7. R. G. Forman, V. E. Kearney, and R. M. Engle:Trans. ASME, 1967, vol. 89D, p. 459.

    Article  Google Scholar 

  8. K. R. Lehr and H. W. Liu:Int. J. Fract. Mech., 1969, vol. 5, p. 45.

    Article  Google Scholar 

  9. N. E. Frost and J. R. Dixon:Int. J. Fract. Mech., 1968, vol. 3, p. 301.

    Google Scholar 

  10. T. Yokobori and M. Ichikawa:Rep. Res. Inst, Tohoku Univ., 1968, vol. 4, p. 45.

    Google Scholar 

  11. B. Tomkins:Phil. Mag., 1968, vol. 18, p. 1041.

    Article  Google Scholar 

  12. P. C. Paris:Fatigue-An Interdisciplinary Approach, J. J. Burke, N. L. Reed, and V. Weiss, eds., p. 107, Syracuse University Press, Syracuse, N. Y., 1964.

    Google Scholar 

  13. H. H.Johnson and P. C.Paris:J. Engr. Fracture Mech., 1968,vol. 1,p. 3.

    Article  Google Scholar 

  14. W. Elber:J. Engr. Fracture Mech., 1970, vol. 2, p. 37.

    Article  Google Scholar 

  15. G. R. Irwin:J. Engr. Fracture Mech., 1968, vol. 1, p. 241.

    Article  Google Scholar 

  16. Unpublished research, calculations made by the authors.

  17. L. F. Coffin, Jr. and J. F. Tavernelli:Trans. TMS-AIME, 1959, vol. 215, p. 794.

    Google Scholar 

  18. L. F. Coffin, Jr.:Appl. Mater. Res., 1962, vol. 1, p. 129.

    Google Scholar 

  19. L. F. Coffin, Jr.:Trans. ASM, 1967, vol. 60, p. 160.

    Google Scholar 

  20. J. Morrow:Am. Soc. Test. Mater., Spec. Tech. Publ. 378, p. 45, Philadelphia, 1965.

  21. T. Broom:Mater. Sci. Eng., 1968-69, vol. 3, p. 138.

    Article  Google Scholar 

  22. R. W. Landgraf, J. Morrow, and T. Endo:J. Mater., 1969, vol. 4, p. 176.

    Google Scholar 

  23. C. E. Feltner and C. Laird:Acta Met., 1967, vol. 15, p. 1621.

    Article  Google Scholar 

  24. J. H. Weber, Jr.: Ph.D. dissertation, Lehigh University, 1969.

  25. R. W. Hertzberg: Ph.D. dissertation, Lehigh University, 1965.

  26. H. Nordberg and R. W. Hertzberg: Unpublished research, Lehigh University, Bethlehem, Pa., 1969.

  27. G. R. Irwin:Proc. of the Sagamore Conf. on Research for Ordnance and Materials, 1960, p. 63.

  28. G. A. Miller:Trans. ASM, 1968, vol. 61, p. 442.

    Google Scholar 

  29. T. Endo and J. Morrow:J Mater., 1969, vol. 4, p. 159.

    Google Scholar 

  30. D. P. Wilhelm:Am. Soc. Test. Mater., Spec. Tech. Publ. 415, p. 363, Philadelphia, 1967.

  31. P. C. Paris and F. Erdogan:Trans. ASME, 1963, vol. 85D, p. 528.

    Article  Google Scholar 

  32. J. Barsom: Ph.D. dissertation, University of Pittsburgh, 1969.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Assistant, Department of Metallurgy and Materials Science, Lehigh University, Bethlehem, Pa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickerson, J.P., Hertzberg, R.W. The role of mechanical properties in low-stress fatigue crack propagation. Metall Trans 3, 179–189 (1972). https://doi.org/10.1007/BF02680597

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02680597

Keywords

Navigation