Skip to main content
Log in

Continuous-cooling-precipitation kinetics of Nb(CN) in high-strength low-alloy steels

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Although isothermal precipitation has been frequently studied with respect to industrial hot deformation processing, the temperature decreases continuously under these conditions so that isothermal data cannot be applied directly to predict the precipitation kinetics. This study therefore was concerned with the continuous-cooling-precipitation (CCP) behavior of Nb carbonitride in austenite. In the present work, the Liu-Jonas (L-J) model was used to calculate the precipitation start (P s) time at a given temperature from experimental data. A new calculation method for predicting the precipitation finish (P f) time, based on reaction kinetics and classical nucleation and growth theory, was also developed. The additivity rule was then used to calculate the extent of precipitation during continuous cooling. Isothermal precipitation rates for 0.04 pct Nb steels were measured experimentally by the stress relaxation method. The CCP behavior was then calculated from the model, and the accuracy of the predictions was evaluated by carrying out continuous-cooling tests using a deformation dilatometer. The precipitate size distributions were determined by the transmission electron microscopy of specimens quenched after increasing intervals of cooling at various cooling rates. TheP s andP f times estimated from the particle size data show good agreement with the calculated CCP behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Jonas and I. Weiss:Met. Sci., 1979, vol. 13, pp. 238–45.

    CAS  Google Scholar 

  2. M.G. Akben, I. Weiss, and J.J. Jonas:Acta Metall., 1981, vol. 29, pp. 111–21.

    Article  CAS  Google Scholar 

  3. I. Weiss and J.J. Jonas:Metall. Trans. A., 1979, vol. 10A, pp. 831–40.

    CAS  Google Scholar 

  4. S. Yamamoto, C. Ouchi, and T. Osuka:Thermomechanical Processing of Microalloyed Austenite, A.J. DeArdo, G.A. Ratz, and P.J. Wray, eds., AIME, Warrendale, PA, 1982, pp. 613–39.

    Google Scholar 

  5. D.R. DiMicco and A.T. Davenport:Thermomechanical Processing of Microalloyed Austenite, A.J. DeArdo, G.A. Ratz, and P.J. Wray, eds., AIME, Warrendale, PA, 1982, pp. 59–83.

    Google Scholar 

  6. R. Coladas, J. Masounave, and J.P. Bailon:Thermomechanical Processing of Microalloyed Austenite, A.J. DeArdo, G.A. Ratz, and P.J. Wray, eds., AIME, Warrendale, PA, 1982, pp. 341–83.

    Google Scholar 

  7. A. LeBon, J. Rofes-Vernis, and C. Rossard:Met. Sci., 1975, vol. 9, pp. 36–40.

    Article  CAS  Google Scholar 

  8. A.T. Davenport, R.E. Miner, and R.A. Kot:The Hot Deformation of Austenite, J.B. Ballance, ed., AIME, New York, NY, 1977, pp. 186–203.

    Google Scholar 

  9. T.G. Oakwood, W.E. Heitmann and E.S. Madrzyk:The Hot Deformation of Austenite, J.B. Ballance, ed., AIME, New York, NY, 1977, pp. 204–32.

    Google Scholar 

  10. K.J. Irvine and T.N. Baker:Met. Sci., 1979, vol. 13, pp. 228–37.

    CAS  Google Scholar 

  11. G.L. Wang and M.G. Akben:HSLA Steels, A.J. DeArdo, ed., TMS, Warrendale, PA, 1988, pp. 79–90.

    Google Scholar 

  12. M.A. Bepari:Metall. Trans. A, 1990, vol. 21A, pp. 2839–55.

    CAS  Google Scholar 

  13. B. Dutta and C.M. Sellars:Mater. Sci. Technol., 1987, vol. 3, pp. 197–206.

    CAS  Google Scholar 

  14. W.J. Liu and J.J. Jonas:Metall. Trans. A, 1989, vol. 20A, pp. 689–97.

    CAS  Google Scholar 

  15. E. Scheil:Arch. Eisenhüttenwes., 1935, vol. 12, pp. 565–67.

    Google Scholar 

  16. M. Umemoto, K. Horiuchi, and I. Tamura:Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 854–61.

    Google Scholar 

  17. M. Umemoto, N. Nishioka, and I. Tamura:Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 629–36.

    Google Scholar 

  18. M. Umemoto, K. Horiuchi, and I. Tamura:Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 690–95.

    CAS  Google Scholar 

  19. M. Umemoto, N. Nishioka, and I. Tamura:Proc. 3rd Int. Cong. on Heat Treatment of Materials, TMS, Shanghai, 1983, p. 5.35.

  20. M. Umemoto, Z. H. Guo, and I. Tamura:Mater. Sci. Technol., 1987, vol. 3, p. 249.

    CAS  Google Scholar 

  21. H. Ohtsuka, M. Umemoto, and I. Tamura:Tetsu-to-Hagané, 1987, vol. 73, pp. 144–51.

    Google Scholar 

  22. W.J. Liu and J.J. Jonas:Metall. Trans. A, 1988, vol. 19A, pp. 1403–13.

    CAS  Google Scholar 

  23. W.J. Liu and J.J. Jonas:Metall. Trans. A, 1988, vol. 19A, pp. 1415–24.

    CAS  Google Scholar 

  24. M. Djahazi: Ph.D. Thesis, McGill University, Montreal, 1989.

  25. J. Geise and C. Herzig:Z. Metallkd., 1985, vol. 76, pp. 622–26.

    CAS  Google Scholar 

  26. W.J. Liu and J.J. Jonas:Mater. Sci. Technol., 1989, vol. 5, pp. 8–12.

    CAS  Google Scholar 

  27. S.H. Park: Ph.D. Thesis, McGill University, Montreal, 1991.

  28. R.C. Sharma, V.K. Lakshmanan, and J.S. Kirkaldy:Metall. Trans. A, 1984, vol. 15A, pp. 545–53.

    CAS  Google Scholar 

  29. A.E. Kolmogorov:Akad. Nauk. SSSR IZV. Ser. Mater., 1937, vol. 1, p. 355.

    Google Scholar 

  30. W.A. Johnson and R.F. Mehl:TMS-AIME, 1939, vol. 135, pp. 416–58.

    Google Scholar 

  31. M. Avrami:J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    Article  CAS  Google Scholar 

  32. M. Avrami:J. Chem. Phys., 1940, vol. 8, pp. 212–24.

    Article  CAS  Google Scholar 

  33. M. Avrami:J. Chem. Phys., 1941, vol. 9, pp. 177–90.

    Article  CAS  Google Scholar 

  34. C. Zener:J. Appl. Phys., 1949, vol. 20, pp. 950–53.

    Article  CAS  Google Scholar 

  35. J. Burke:The Kinetics of Phase Transformations in Metals, Pergamon Press, London, 1965.

    Google Scholar 

  36. K.C. Russell:Adv. Colloid Interface Sci., 1980, vol. 13, pp. 205–31.

    Article  CAS  Google Scholar 

  37. J.W. Cahn:Acta Metall., 1956, vol. 4, pp. 572–75.

    Article  CAS  Google Scholar 

  38. H.P. Stüwe:Recrystallization of Metallic Materials, F. Haessner, ed., Verlag, Stuttgart, 1978, pp. 11–21.

    Google Scholar 

  39. D. Wexler and D.W. Borland:Met. Forum, 1982, vol. 5 (1), pp. 54–60.

    CAS  Google Scholar 

  40. M.F. Ashby and R. Ebeling:TMS-AIME, 1966, vol. 236, pp. 1396–1404.

    CAS  Google Scholar 

  41. T. Chandra, I. Weiss, and J.J. Jonas:Met. Sci., 1982, vol. 16, pp. 97–104.

    Article  CAS  Google Scholar 

  42. L.C. Brown:Acta Metall., 1989, vol. 37, pp. 71–77.

    Article  Google Scholar 

  43. T. Chandra, I. Weiss, and J.J. Jonas:Can. Metall. Q., 1981, vol. 20, pp. 421–28.

    CAS  Google Scholar 

  44. O.E. Atasoy:Metall. Trans. A, 1983, vol. 14A, pp. 379–84.

    Google Scholar 

  45. N.K. Ballinger and R.W.K. Honeycombe:Met. Sci., 1980, vol. 14, pp. 121–33.

    Google Scholar 

  46. S. Kurokawa, J.E. Ruzzante, A.M. Hey, and F. Dyment:Met. Sci., 1983, vol. 17, pp. 433–38.

    Article  CAS  Google Scholar 

  47. S. Akamatsu, Y. Matsumura, T. Senuma, H. Yada, and S. Ishikawa:Tetsu-to-Hagané, 1989, vol. 75, pp. 933–40.

    CAS  Google Scholar 

  48. S. Yue and J.J. Jonas:Mater. Forum, 1990, vol. 14, pp. 245–52.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.H., Yue, S. & Jonas, J.J. Continuous-cooling-precipitation kinetics of Nb(CN) in high-strength low-alloy steels. Metall Trans A 23, 1641–1651 (1992). https://doi.org/10.1007/BF02804360

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02804360

Keywords

Navigation