Skip to main content
Log in

Nonlinear analysis of shells using the MITC formulation

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

The formulation of general shell elements using the method of mixed interpolation of tensorial components (MITC) is reviewed. In particular three elements that were formulated using the MITC method are examined: the MITC4 and MITC8 that were developed for general nonlinear analysis under the restriction of small strains and the MITC4-TLH that was developed for finite strain elasto-plastic analysis of shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, S., Irons, B.M., and Zienkiewicz, O.C. (1970), “Analysis of thick and thin shell structures by curved finite elements”,Int. J. Num. Meth. Engng.,2, pp. 419–451.

    Article  Google Scholar 

  2. Zienkiewicz, O.C. and Taylor, R.L. (1989), “The Finite Element Method”. (Fourth Edition), Mc Graw Hill.

  3. Reissner, E. (1945), “The effect of transverse shear deformation on the bending of elastic plates”,J. Appl. Mech.,12, pp. 69–76.

    MathSciNet  Google Scholar 

  4. Mindlin, R.D. (1951), “Influence of rotatory inertia and shear in flexural motions of isotropic elastic plates”,J. Appl. Mech.,18, pp. 31–38.

    MATH  Google Scholar 

  5. Bathe, K.J. and Bolourchi, S. (1979), “A geometric and material nonlinear plate and shell element”,Comput. & Struct.,11, pp. 23–48.

    Article  Google Scholar 

  6. Bathe, K.J. (1982), “Finite Element Procedures in Engineering Analysis” Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  7. Ramm, E. (1977), “A plate/shell element for large deflections and rotations” inFormulations and Computational Algorithms in Finite Element Analysis, (Eds. K.J. Bathe et. al.), M.I.T. Press.

  8. Kråkeland, B. (1978), “Nonlinear analysis of shells using degenerate isoparametric elements”, inFinite Elements in Nonlinear Mechanics, Tapir Publishers.

  9. Dvorkin, E.N. (1984),On Nonlinear Finite Element Analysis of Shell Structures, Ph.D. Thesis, Dept. of Mech. Eng., M.I.T., Cambridge, Mass., U.S.A.

    Google Scholar 

  10. Dvorkin, E.N. and Bathe, K.J. (1984), “A continuum mechanics based four node shell element for general nonlinear analysis”,Engrg. Comput.,1, pp. 77–88.

    Article  Google Scholar 

  11. Bathe, K.J. and Dvorkin, E.N. (1985), “A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation”,Int. J. Num. Meth. Engrg.,21, pp. 367–383.

    Article  MATH  Google Scholar 

  12. Bathe, K.J. and Dvorkin, E.N. (1986), “A formulation of general shell elements—the use of mixed interpolation of tensorial components”,Int. J. Num. Meth. Engrg.,22, pp. 697–722.

    Article  MATH  Google Scholar 

  13. Dvorkin, E.N. (1992), “On nonlinear analysis of shells using finite elements based on mixed interpolation of tensorial components”, inNonlinear Analysis of Shells by Finite Elements, (Ed. F.G. Rammerstorfer), Springer Verlag.

  14. Bathe, K.J., Dvorkin, E.N. and Ho, L.W. (1983), “Our discrete Kircchoff and isoparametric shell elements for nonlinear analysis-an assessment”,Comput. & Struct.,16, pp. 89–98.

    Article  MATH  Google Scholar 

  15. Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N. and Ong, J. (1985), “Stress projection for membrane and shear locking in shell finite elements”,Comput. Methods Appl. Mech. Engrg.,51, pp. 221–258.

    Article  MATH  MathSciNet  Google Scholar 

  16. Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), “Reduced integration techniques in general analysis of plates and shells”,Int. J. Num. Meth. Engrg.,3, pp. 275–290.

    Article  MATH  Google Scholar 

  17. Hughes, T.J.R. (1987), “The Finite Element Method” Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  18. Malkus, D.S. and Hughes, T.J.R. (1978), “Mixed finite element methods in reduced and selective integration techniques: a unification of concepts”,Comput. Methods Appl. Mech. Engrg.,15, pp. 63–81.

    Article  MATH  Google Scholar 

  19. Grisfield, M.A. (1986), “Finite Elements and Solution Procedures for Structural Analysis. Vol. I: Linear Analysis”, Pineridge Press, Sivansea.

    Google Scholar 

  20. Belytschko, T., and Tsay, C.S. (1983), “A stabilization procedure for the quadrilateral plate element with one-point quadrature”,Int. J. Num. Meth. Engrg.,19, pp. 405–419.

    Article  MATH  Google Scholar 

  21. Belytschko, T. and Leviathan, I. (1994), “Projection schemes for one-point quadrature shell elements”,Comput. Methods Appl. Mech. Engrg.,115, pp. 277–286.

    Article  MathSciNet  Google Scholar 

  22. Irons, B.M. and Razzaque, A. (1972), “Experience with the patch test for convergence of finite elements”, inThe Mathematical Foundations of the Finit Element Method with Applications to Partial Differential Equations, (Ed. A.K. Aziz), Academic Press.

  23. Dvorkin, E.N., Pantuso, D. and Repetto, E.A., “A formulation of the MITC4 shell element for finite strain elasto-plastic analysis”,Comput. Methods Appl. Mech. Engrg. (in press).

  24. Strang, G. and Fix, G.J. (1973), “An Analysis of the Finite Element Method”, Prentice Hall.

  25. Marsden, J.E. and Hughes, T.J.R. (1983), “Mathematical Foundations of Elasticity”, Prentice-Hall, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  26. Dvorkin, E.N., Goldschmit, M.B., Pantuso, D. and Repetto, E.A. (1994) “Comentarios sobre algunas herramientas utilizadas en la resolución de problemas no-lineales de mecánica del continuo”,Rev. Int. de Met. Numéricos para Cálc. y Diseño en Ingeniería,10, pp. 47–65.

    MathSciNet  Google Scholar 

  27. Truesdell, C. and Noll, W. (1965), “The nonlinear field theories of mechanics”, inEncyclopedia of Physics, Springer, Berlin.

    Google Scholar 

  28. Malvern, L.E. (1969), “Introduction to the Mechanics of a Continuous Medium” Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  29. Simo, J.C. and Taylor, R.L. (1985), “Consistent tangent operators for rate-independent plasticity”,Comput. Methods Appl. Mech. Engrg.,48, pp. 101–118.

    Article  MATH  Google Scholar 

  30. Simo, J.C. and Taylor, R.L. (1986), “A return mapping algorithm for plane stress elastoplasticity”,Int. J. Num. Meth. Engrg.,22, pp. 649–670.

    Article  MATH  MathSciNet  Google Scholar 

  31. Ortiz, M. and Simo, J.C. (1986), “An analysis of a new class of integration algorithms for elastoplastic constitutive relations”,Int. J. Num. Meth. Engrg.,23, pp. 353–366.

    Article  MATH  MathSciNet  Google Scholar 

  32. Bathe, K.J. and Cimento, A.P. (1980), “Some practical procedures for the solution of nonlinear finite element equations”,Comput. Methods Appl. Mech. Engrg.,22, pp. 59–85.

    Article  MATH  Google Scholar 

  33. Bathe, K.J. and Dvorkin, E.N. (1983), “On the automatic solution of nonlinear finite element equations”,Comput. & Struct.,17, pp. 871–879.

    Article  Google Scholar 

  34. Dvorkin, E.N., Oñate, E. and Oliver, J. (1988), “On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments”,Int. J. Num. Meth. Engrg.,26, pp. 1597–1613.

    Article  MATH  Google Scholar 

  35. Argyris, J. (1982), “An excursion into large rotations”,Comput. Methods Appl. Mech. Engrg.,32, pp. 85–155.

    Article  MATH  MathSciNet  Google Scholar 

  36. Lee, E.H. and Liu, D.T. (1967), “Finite strain elastic-plastic theory with application to plane-wave analysis”,J. Appl. Phys.,38, pp. 17–27.

    Google Scholar 

  37. Lee, E.H. (1969), “Elastic plastic deformation at finite strain”,J. Appl. Mech.,36, pp. 1–6.

    MATH  Google Scholar 

  38. Argyris, J.H. and Doltsinis, J. St. (1979), “On the large strain inelastic analysis in natural formulation. Part I. Quasistatic problems”,Comput. Methods Appl. Mech. Engrg.,20, pp. 213–241.

    Article  MATH  Google Scholar 

  39. Argyris, J.H. and Doltsinis, J. St. (1980), “On the large strain inelastic analysis in natural formulation. Part II. Dynamic problems”,Comput. Methods Appl. Mech. Engrg. 21, pp. 91–126.

    Article  MATH  Google Scholar 

  40. Simo, J.C. and Ortiz, M. (1985), “A unified approach to finite deformation elastoplasticity based on the use of hyperelastic constitutive equations”,Comput. Methods Appl. Mech. Engrg.,51, pp. 177–208.

    Article  MATH  MathSciNet  Google Scholar 

  41. Simo, J.C. (1988), “A. Framework for finite strain elasto-plasticity based on maximun plastic dissipation and the multiplicative decomposition, part I: Continuum formulation”,Comput. Methods Appl. Mech. Engrg.,66, pp. 199–219.

    Article  MATH  MathSciNet  Google Scholar 

  42. Simo, J.C. (1988), “A. Framework for finite strain elasto-plasticity based on maximun plastic dissipation and the multiplicative decomposition, part II: Computational aspects”,Comput. Methods Appl. Mech. Engrg.,68, pp. 1–31.

    Article  MATH  Google Scholar 

  43. Hill, R. (1950), “The Mathematical Theory of Plasticity”, Oxford University Press.

  44. Dvorkin, E.N., Pantuso, D. and Repetto, E.A. (1994), “A finite element formulation for finite strain elasto-plastic analysis based on mixed interpolation of tensorial components”,Comput. Methods Appl. Mech. Engrg.,114, pp. 35–54.

    Article  Google Scholar 

  45. Hill, R. (1978), “Aspects of invariance in solid mechanics”,Advances in Appl. Mechs.,18, pp. 1–75.

    Article  MATH  Google Scholar 

  46. Athuri, S.N. (1984), “Alternate stress and conjugate strain measures, and mixed variational formulations involving rigid rotations for computational analysis of finitely deformed solids, with applications to plates and shells. Part I”,Comput. & Struct.,18, pp. 93–116.

    Article  Google Scholar 

  47. Krauss, H. (1967), “Thin Elastic Shells”, John Wiley & Sons, New York.

    Google Scholar 

  48. Rodal, J.J.A. and Witmer, E.A. (1979), “Finite-strain large-deflection elastic-viscoplastic finite-element transient analysis of structures”, NASA CR 159874.

  49. Hughes, T.J.R. and Carnoy, E. (1983), “Nonlinear finite element shell formulation accouting for large membrane st rains”,Comput. Methods Appl. Mech. Engrg,39, pp. 69–82.

    Article  MATH  Google Scholar 

  50. Simo, J.C. and Fox, D.D. (1989), “On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization”,Comput. Methods Appl. Mech. Engrg.,72, pp. 267–304.

    Article  MATH  MathSciNet  Google Scholar 

  51. Simo, J.C. Fox, D.D. and Rifai, M.S. (1989), “On a stress resultant geometrically exact shell model. Part II: The linear theory; Computational aspects”,Comput. Methods Appl. Mech. Engrg.,73, pp. 53–92.

    Article  MATH  MathSciNet  Google Scholar 

  52. Simo, J.C. Fox, D.D. and Rifai, M.S. (1990), “On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory”,Comput. Methods Appl. Mech. Engrg.,79, pp. 21–70.

    Article  MATH  MathSciNet  Google Scholar 

  53. Simo, J.C. Fox, D.D. and Rifai, M.S. (1990), “On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching”,Comput. Methods Appl. Mech. Engrg.,81, pp. 91–126.

    Article  MATH  MathSciNet  Google Scholar 

  54. Simo, J.C. and Kennedy, J.G. (1992), “On a stress resultant geometrically exact shell model. Part V: Nonlinear plasticity formulation and integration algorithms”,Comput. Methods Appl. Mech. Engrg.,96, pp. 133–171.

    Article  MATH  MathSciNet  Google Scholar 

  55. Simo, J.C. and Marsden, J.E. (1984), “On the rotated stress tensor and the material version of the Doyle Ericksen formula”,Arch. Rat. Mechs. Anal.,86, pp. 213–231.

    Article  MATH  MathSciNet  Google Scholar 

  56. Lubliner, J. (1990), “Plasticity Theory”, Macmillan.

  57. Luenberger, D.G. (1984), “Linear and Nonlinear Programming”, Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  58. Eterovic, A.L. and Bathe, K.J. (1990), “A hyperelastic based large strain elasto-plastic constitutive formulation with combined isotropic/kinematic hardening using the logarithmic stress and strain measures”,Int. J. Num. Meth. Engrg.,30, pp. 1099–1114.

    Article  MATH  Google Scholar 

  59. Ortiz, M. and Simo, J.C. (1986), “An analysis of a new class of integration algorithms for elastoplastic constitutive relations”,Int. J. Num. Meth. Engrg.,23, pp. 353–366.

    Article  MATH  MathSciNet  Google Scholar 

  60. Simo, J.C. and Taylor, R.L. (1985), “Consistent tangent operators for rate-independent plasticity”,Comput. Methods Appl. Mech. Engrg.,48, pp. 101–118.

    Article  MATH  Google Scholar 

  61. Simo, J.C. and Taylor, R.L. (1986), “A return mapping algorithm for plane stress elastoplasticity”,Int. J. Num. Meth. Engrg.,22, pp. 649–670.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In memoriam of Juan Carlos Simo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvorkin, E.N. Nonlinear analysis of shells using the MITC formulation. ARCO 2, 1–50 (1995). https://doi.org/10.1007/BF02904994

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02904994

Keywords

Navigation