Skip to main content
Log in

Macrosegregation in directionally solidified dendritic alloys

  • Solidification
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this article, gravity-driven flow and its subsequent effect of promoting macrosegregation during unidirectional solidification of dendritic alloys is presented. Examples of macrosegregation that arise during the controlled directional solidification of hypo- and hypereutectic Pb−Sn alloys are shown, and a method of preventing macrosegregation is demonstrated. The experimental work is discussed in terms of how current knowledge of solute redistribution in a dendritic array can be promoted as well as how the processing technique might be applied to improve microstructural homogeneity during controlled directional solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Desch,J. Inst. Metals, 4 (1910), pp. 235–246.

    Google Scholar 

  2. C.H. Desch,J. Inst. Metals, 11 (1914), pp. 57–118.

    Google Scholar 

  3. C.H. Tonamy,J. Inst. Metals, 14 (1915), pp. 101–103.

    Google Scholar 

  4. E.A. Smith,Metal Industry, 18 (1921), pp. 65–68.

    Google Scholar 

  5. R. Genders,J. Inst. Metals, 35 (1926), pp. 259–293.

    Google Scholar 

  6. A. Phillips and R.M. Brick,Metals Technology, 2 (1937).

  7. L.H. Nelson,Metals Technology, 4 (802) (1937).

  8. A. Hayes and J. Chipman,Metals Technology 12 (938) (1938).

  9. D.E. Adams,J. Inst. Metals, 75 (1948), pp. 809–838.

    Google Scholar 

  10. A. Portevin and M. Dannenmuller,J. Inst. Metals, 75 (1948), pp. 949–972.

    Google Scholar 

  11. V. Kondic,J. Inst. Metals, 75 (1948), pp. 1162–1164.

    Google Scholar 

  12. E. Marburg,J. Metals, 2 (1953), pp. 157–172.

    Google Scholar 

  13. E. Scheil,Metallforschung, 2 (1947), p. 69.

    CAS  Google Scholar 

  14. W.G. Phann,Trans. AIME, 7 (1952), pp. 747–753.

    Google Scholar 

  15. W.A. Tiller et al.,Acta Metall., 1 (1953), pp. 428–437.

    CAS  Google Scholar 

  16. J.A. Burton, R.C. Prim, and W.P. Slichter,J. Chem. Phys., 21 (1953), p. 13.

    Google Scholar 

  17. L. Northcott,J. Inst. Metals, 62 (1938), pp. 101–136.

    Google Scholar 

  18. L. Northcott,J. Inst. Metals, 65 (1939), pp. 17–204.

    Google Scholar 

  19. L. Northcott and D.E. Thomas,J. Inst. Metals, 65 (1939), pp. 20–216.

    Google Scholar 

  20. B.H. Alexander and F.N. Rhines,Trans. AIME, 10 (1950), pp. 1267–1273.

    Google Scholar 

  21. J.S. Kirkaldy and W.V. Youdelis,Trans. AIME, 212 (1958), pp. 833–842.

    CAS  Google Scholar 

  22. F. Weinberg,Trans. AIME, 227 (1963), pp. 231–238.

    CAS  Google Scholar 

  23. G.C. Gould,Trans. AIME, 233 (1965), pp. 1345–1351.

    CAS  Google Scholar 

  24. G.S. Cole and G.F. Bolling,Trans. AIME, 233 (1965), pp. 1568–1572.

    CAS  Google Scholar 

  25. R.P. DeVries and G.R. Mumau,J. Metals, 11 (1968), pp. 33–36.

    Google Scholar 

  26. G.S. Cole and G.F. Bolling,Trans. AIME, 245 (1969), pp. 725–734.

    CAS  Google Scholar 

  27. R.J. McDonald and J.D. Hunt,Trans. AIME, 245 (1969), pp. 1993–1997.

    CAS  Google Scholar 

  28. R.J. McDonald and J.D. Hunt,Metall. Trans., 1 (1970), pp. 1787–1788.

    Google Scholar 

  29. A.F. Giamei and B.H. Kear,Metall. Trans., 1 (1970), pp. 2185–2192.

    CAS  Google Scholar 

  30. S.M. Copley et al.,Metall. Trans., 1 (1970), pp. 2193–2204.

    CAS  Google Scholar 

  31. N. Standish and G. Lang,J. Aust. Inst. Metals, 15 (1970), pp. 120–126.

    CAS  Google Scholar 

  32. M.J. Stewart, L.C. MacAulay, and F. Weinberg,Metall. Trans. 2 (1971), pp. 169–173.

    CAS  Google Scholar 

  33. G.S. Cole,Metall. Trans., 2 (1971), pp. 357–370.

    CAS  Google Scholar 

  34. M.J. Stewart and F. Weinberg,Metall. Trans., 3 (1972), pp. 333–337.

    CAS  Google Scholar 

  35. J. Verhoeven,Metall. Trans., 2 (1972), pp. 2673–2680.

    Article  Google Scholar 

  36. M.H. Burden, D.J. Hebditch, and J.D. Hunt,J. Crystal Growth, 20 (1973), pp. 121–124.

    CAS  Google Scholar 

  37. T.E. Strangman and T.Z. Kattamis,Metall. Trans., 4 (1973), pp. 2219–2221.

    CAS  Google Scholar 

  38. J.D. Verhoeven and E.D. Gibson,Metall. Trans., 4 (1973), pp. 2581–2590.

    CAS  Google Scholar 

  39. N. Streat and F. Weinberg,Metall. Trans., 5 (1974), pp. 2539–2548.

    CAS  Google Scholar 

  40. J.D. Verhoeven, K.K. Kingery, and R. Hofer,Metall. Trans. B., 6B (1975), pp. 647–652.

    CAS  Google Scholar 

  41. N. Streat and F. Weinberg,Metall. Trans. B., 7B (1976), pp. 417–423.

    CAS  Google Scholar 

  42. J. Szekely and A.S. Jassal,Metall. Trans. B, 9B (1978), pp. 389–398.

    CAS  Google Scholar 

  43. K.M. Fisher,Physico-ChemHydro, 2 (1981), pp. 311–326.

    CAS  Google Scholar 

  44. J.J. Favier,Acta Metall. 29 (1981), pp. 197–204.

    CAS  Google Scholar 

  45. J.J. Favier,Acta Metall., 29 (1981), pp. 205–214.

    CAS  Google Scholar 

  46. H.E. Huppert and J.S. Turner,J. Fluid Mech., 106 (1981), pp. 299–329.

    Google Scholar 

  47. A. Sample and A. Hellawell,Metall. Trans. B., 13B (1982), pp. 495–501.

    CAS  Google Scholar 

  48. P.R. Sahm,Convective Transport and Instability Phenomena, ed. J. Zierup and H. Oertel, Jr. (Karlsruhe G. Braun, 1982) pp. 515–556.

  49. R.N. Hills, D.E. Loper, and P.H. Roberts,Q. J. Mech. Appl. Math., 36 (1983), pp. 505–539.

    Google Scholar 

  50. K. Murakami, A. Shiraishi, and T. Okamoto,Acta Metall, 31 (1983), pp. 1417–1424.

    CAS  Google Scholar 

  51. P.H. Roberts and D.E. Loper,Stellar and Planetary Mannetism, ed. A.M. Soward (New York: Gordon and Breach Science Publishers, 1983), pp. 329–349.

    Google Scholar 

  52. A. Hellawell, U.S. patent no. 4,462,454 (July, 1984).

  53. A.K. Sample and A. Hellawell,Metall. Trans. A., 15A (1984), pp. 2163–2173.

    CAS  Google Scholar 

  54. F. Weinberg,Metall. Trans. B., 15B (1984), pp. 681–684.

    Google Scholar 

  55. K. Murakami, A. Shiraishi, and T. Okamoto,Acta Metall, 32 (1984), pp. 1423–1428.

    CAS  Google Scholar 

  56. A.C. Fowler,IMA J. Appl. Math., 35 (1985), pp. 159–174.

    Google Scholar 

  57. Y. Miyata, T. Suzuki, and J.-I. Uno,Metall. Trans. A, 16A (1985), pp. 1799–1805.

    CAS  Google Scholar 

  58. H.E. Huppert and M.G. Worster,Nature, 314 (1985), pp. 703–707.

    CAS  Google Scholar 

  59. J.D. Verhoeven, J.T. Mason, and R. Trivedi,Metall. Trans. A, 17A (1986), pp. 991–1000.

    CAS  Google Scholar 

  60. V. Laxmanan et al., NASA TM 89885, (1986).

  61. S.C. Flood and J.D. Hunt,Appl. Sci. Research, 44 (1987), pp. 27–42.

    CAS  Google Scholar 

  62. W.D. Bennon and F.P. Incropera,Metall. Trans. B, 18B (1987), pp. 611–616.

    CAS  Google Scholar 

  63. J.R. Sarazin and A. Hellawell,Metall. Trans. A, 19A (1988), pp. 1861–1871.

    CAS  Google Scholar 

  64. J.C. Heinrich,Comp. Meth. in Appl. Mech. and Engineering, 69 (1988), pp. 65–88.

    Google Scholar 

  65. L. Wang, V. Laxmanan, and J.F. Wallace,Metall. Trans. A, 19A (1988), pp. 2687–2694.

    CAS  Google Scholar 

  66. G.R. Hardin and R.L. Sani,Proc. First National Fluid Dynamics Congress, New York: AIAA, 1988), pp. 1–5.

    Google Scholar 

  67. N. Tunca and R.W. Smith,J. Mat. Sci., 23 (1988), pp. 111–120.

    CAS  Google Scholar 

  68. C. Beckermann and R. Viskanta,Physico-Chem Hydro, 10 (1988), pp. 195–213.

    CAS  Google Scholar 

  69. H.E. Huppert,J. Fluid Mech., 212 (1990), pp. 209–240.

    CAS  Google Scholar 

  70. S.N. Tewari,Mat. Sci. end Eng., A130 (1990), pp. 219–229.

    Google Scholar 

  71. P.J. Prescott and F.P. Incropera,Metall. Trans. B, 22B (1991), pp. 529–540.

    CAS  Google Scholar 

  72. C.F. Chen and F. Chen,J. Fluid Mech., 227 (1991), pp. 567–586.

    CAS  Google Scholar 

  73. R.Z. Guerin, B. Billia, and P. Haldenwang,Phys. Fluids A, 3 (1991), pp. 1873–1879.

    CAS  Google Scholar 

  74. H. Shahani, G. Amberg, and H. Fredriksson,Metall. Trans. A., 23A (1992), pp. 2301–2311.

    CAS  Google Scholar 

  75. M. Grae Worsten,J. Fluid Mech., 237 (1992), pp. 649–669.

    Google Scholar 

  76. S.N. Tewari and R. Shah,Metall. Trans. A, 23A (1992), pp. 3383–3392.

    CAS  Google Scholar 

  77. A. Hellawell, J.R. Sarazin, and R.S. Steube,Phil. Trans. R. Soc. Lond. A, 345 (1993), pp. 507–544.

    CAS  Google Scholar 

  78. M.H. McCay, T.D. McCay, and J.A. Hopkins,Metall. Trans. B, 24B (1993), pp. 669–675.

    CAS  Google Scholar 

  79. S.N. Tewari, R. Shah, and M.A. Chopra,Metall. Trans. A, 24A (1993), pp. 1661–1669.

    CAS  Google Scholar 

  80. S.N. Tewari, R. Shah, and M.A. Chopra, AIM paper 93-0262, 1993.

  81. G. Amberg and G.M. Homsy,J. Fluid Mech., 252 (1993), pp. 79–98.

    CAS  Google Scholar 

  82. I.M.S. Sidawi and S.N. Tewari,J. Crystal Growth 131 (1993), pp. 230–238.

    CAS  Google Scholar 

  83. F. Chen, T.L. Yang, and J.W. Lu,J. Appl. Phys., 74 (1993), pp. 7531–7541.

    CAS  Google Scholar 

  84. H.C. de Groh III,Proc. 1st Inter. Conf. on Transport Phenomena in Processing, ed. S.I. Guceri (Lancaster, PA: Technomic Publishers, 1993), pp. 209–218.

    Google Scholar 

  85. H.C. de Groh III,Metall. Trans. A, 25A (1994), pp. 2507–2516.

    Google Scholar 

  86. P.W. Emms and A.C. Fowler,J. Fluid Mech., 262 (1994), pp. 111–139.

    CAS  Google Scholar 

  87. M. Grae Worster and R.C. Kerr,J. Fluid Mech., 269 (1994), pp. 23–44.

    Google Scholar 

  88. F. Chen, J.W. Lu, and T.L. Yang,J. Fluid Mech., 276 (1994), pp. 163–187.

    CAS  Google Scholar 

  89. S.V. Garimella, J.P. McNulty, and L.Z. Schlitz,Metall. Trans. A, 26A (1995), pp. 971–981.

    CAS  Google Scholar 

  90. M.C. Schneider and C. Beckermann,Metall. Trans. A, 26A (1995), pp. 2373–2388.

    CAS  Google Scholar 

  91. S.N. Tewari and R. Shah,Metall. Trans. A, 27A (1996), pp. 1353–362.

    CAS  Google Scholar 

  92. S. Chang and D.M. Stefanescu,Metall. Trans. A, 27A (1996), pp. 2708–2721.

    CAS  Google Scholar 

  93. C.Y. Wang and C. Beckermann,Metall. Trans. A, 27A (1996), pp. 754–2764.

    Google Scholar 

  94. C.Y. Wang and C. Beckermann,Metall. Trans., 27A (1996), pp. 2765–2783.

    CAS  Google Scholar 

  95. C. Beckermann and C.Y. Wang,Metall. Trans. A, 27A (1996), pp. 2784–2795.

    CAS  Google Scholar 

  96. M. Grae Worster, D.M. Anderson, and T.P. Schulze,Proc. Third Microgravity Fluid Physics Conference, NASA conference publication 3338, (1996), pp. 369–374.

  97. J.W. Lu and F. Chen,Int. J. Heat Mass Transfer, 40 (1997), pp. 237–246.

    CAS  Google Scholar 

  98. M.C. Flemings and G.E. Nereo,Trans. AIME, 239 (1967), pp. 1449–1461.

    CAS  Google Scholar 

  99. M.C. Flemings, R. Mehrabian, and G.E. Nereo,Trans. AIME, 242 (1968), pp. 41–49.

    CAS  Google Scholar 

  100. M.C. Flemings and G.E. Nereo,Trans. AIME, 242 (1968), pp. 50–55.

    CAS  Google Scholar 

  101. R. Mehrabian, M. Keane, and M.C. Flemings,Metall. Trans., 1 (1970), pp. 3238–3241.

    CAS  Google Scholar 

  102. R. Mehrabian, M.A. Keane, and M.C. Flemings,Metall. Trans., 2 (1971), pp. 357–370.

    Google Scholar 

  103. S. Kou, D.R. Poirier, and M.C. Flemings,Metall. Trans. B, 9B (1978), pp. 711–719.

    CAS  Google Scholar 

  104. T. Fujii, D.R. Poirier, and M.C. Flemings,Metall. Trans. B, 10B (1979), pp. 331–339.

    CAS  Google Scholar 

  105. A.L. Maples and D.R. Poirier,Metall. Trans. B, 15B (1984), pp. 163–172.

    CAS  Google Scholar 

  106. R. Nasser-Rafi, R. Deshmukh, and D.R. Poirier,Metall. Trans. A, 16A (1985), pp. 2263–2271.

    CAS  Google Scholar 

  107. P. Nandapurkar et al.,Metall. Trans. B, 20B (1989), pp. 711–721.

    CAS  Google Scholar 

  108. J.C. Heinrich et al.,Metall. Trans. B, 20B (1990), pp. 883–891.

    Google Scholar 

  109. S. Ganesan and D.R. Poirier,Metall. Trans. B, 21B (1990), pp. 173–181.

    CAS  Google Scholar 

  110. M.S. Bhat et al.,Scripta Met. et Mat., 31 (1994), pp. 339–344.

    CAS  Google Scholar 

  111. M.S. Bhat, D.R. Poirier, and J.C. Heinrich,Metall. Trans. B, 26B (1995), pp. 1091–1092.

    CAS  Google Scholar 

  112. M.S. Bhat, D.R. Poirier, and J.C. Heinrich,Metall. Trans. B, 26B (1995), pp. 1049–1056.

    CAS  Google Scholar 

  113. H.W. Huang, J.C. Heinrich, and D.R. Poirier,Modelling Simul. Mater. Sci. Eng. 4 (1996), pp. 245–259.

    CAS  Google Scholar 

  114. M. McLean,Directionally Solidified Materials for High Temperature Service, Book 296, London: J.W. Arrowsmith, Ltd., 1983).

    Google Scholar 

  115. R. Elliott,Eutectic Solidification Processing, (London: Butterworths, 1983).

    Google Scholar 

  116. M.D. Dupouy, D. Camel, and J.J. Favier,Acta. Metall., 37 (1989), pp. 1143–1157.

    CAS  Google Scholar 

  117. D. Camel et al.,Scientific Results of the German Spacelab Mission D1 (Cologne, Germany: Norderney, WPF, 1986), pp. 236–246.

    Google Scholar 

  118. M.D. Dupouy, D. Camel, and J.J. Favier,J. Crystal Growth, 126 (1993), pp. 480–492.

    CAS  Google Scholar 

  119. R.N. Grugel et al.,J. Crystal Growth, 121 (1992), pp. 599–607.

    CAS  Google Scholar 

  120. R.N. Grugel et al., paper no. 92-0349,AIM Proceedings of the 30th Aerospace Sciences and Exhibit Conference (Reno, NV: AIM, 1992).

    Google Scholar 

  121. S. Kim et al.,Experimental Methods for Microgravity Materials Science Research, ed. R.A. Schiffman (Warrendale, PA: TMS, 1992), pp. 101–107.

    Google Scholar 

  122. Shinwoo Kim et al.,Metall. Trans. A, 24A (1993), pp. 975–979.

    CAS  Google Scholar 

  123. G.S. Cole and W.C. Winegard,J. Inst. Metals, 98 (1964-65), pp. 153–164.

    Google Scholar 

  124. J.R. Carruthers,J. Crystal Growth, 2 (1968), pp. 1–8.

    CAS  Google Scholar 

  125. L.C. Macaulay and F. Weinberg,Metall. Trans., 4 (1973), pp. 2097–2107.

    CAS  Google Scholar 

  126. Binary Alloy Phase Diagrams, ed. T.B. Massalski (Metals Park, OH: ASM, 1986), p. 1848.

    Google Scholar 

  127. J.G. Georgiadis and I. Catton,Trans. ASME, 108 (1986), pp. 284–290.

    Article  Google Scholar 

  128. A. Bejan,Handbook of Single-Phase Convective Heat Transfer, ed. S. Kakske, R.K. Shah, and W. Aung (New York: John Wiley & Sons, 1987), pp. 16.1–16.34.

    Google Scholar 

  129. V.R. Voller and C. Prakash,Int. J. Heat and Mass Transfer, 30 (1987), pp. 1709–19.

    CAS  Google Scholar 

  130. F. Chen and C.F. Chen,J. Heat Transfer, 110 (1988), pp. 403–409.

    CAS  Google Scholar 

  131. S. Tait and C. Jaupers,J. Geo. Res., 97 (1992), p. 6735.

    CAS  Google Scholar 

  132. A.J. Pearlstein, final technical report, NASA grant NAG3-1121, and report NAS CR196372.

  133. D.G. Neilson and F.P. Incropera,Int. J. Heat Mass Transfer, 34 (1991), pp. 1717–1732.

    CAS  Google Scholar 

  134. D.G. Neilson and F.P. Incropera,Int. J. Heat Mass Transfer, 36 (2) (1993), pp. 489–505.

    CAS  Google Scholar 

  135. S.D. Fellicelli, J.C. Heinrich, and D.R. Poirier,Metall. Trans. A, 26A (1995), pp. 999–1006.

    Google Scholar 

  136. S.G. Shabestari and G.E. Gruzleski,Metall. Trans. A, 26A (1995), pp. 999–1006.

    CAS  Google Scholar 

  137. J.C. Williams,Phil. Trans. R. Soc. Lond. A, 351 (1995), pp. 435–449.

    Google Scholar 

  138. M. McLean,Phil. Trans. R. Soc. Lond. A, 351 (1995), pp. 419–433.

    CAS  Google Scholar 

Download references

Authors

Additional information

Authors' Note: Excellent sources for historical information are Cyril Stanley Smith's booksA Search for Structure, A History of Metallography, andThe Science of Steel 1532–1786. We acknowledge that there were many early investigations regarding segregation phenomena that took place in countries other than the United States and Great Britain that have not been referenced. Furthermore, conference proceedings and reports are not included (e.g., prior to 1938, the British Iron and Steel Institute published seven reports on the heterogeneity of stel ingots). In trying to keep the discussion within the context of dendritic growth we do not, unfortunately, recognize the many important crystal growth/planar/cellular front investigations. Finally, there are certainly many recent and relevant contributions of which we are unaware and apologize for the lack of their inclusion.

R.N. Grugel earned his Ph.D. in metallurgical engineering at Michigan Technological University in 1983. He is currently a staff scientist at the Universities Space Research Association. He is also a member of TMS.

L.N. Brush earned his Ph.D. in metallurgical engineering and materials science at Carnegie Mellon University in 1988. He is currently associate professor at the University of Washington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grugel, R.N., Brush, L.N. Macrosegregation in directionally solidified dendritic alloys. JOM 49, 26–30 (1997). https://doi.org/10.1007/BF02914652

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914652

Keywords

Navigation