Skip to main content
Log in

Recent advances in bacterial cellulose production

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC), which is produced by some bacteria, has unique structural, functional, physical and chemical properties. Thus, the mass production of BC for industrial application has recently attracted considerable attention. To enhance BC production, two aspects have been considered, namely, the engineering and genetic viewpoints. The former includes the reactor design, nutrient selection, process control and optimization; and the latter the cloning of the BC synthesis gene, and the genetic modification of the speculated genes for higher BC production. In this review, recent advances in BC production from the two viewpoints mentioned above are described, mainly using the bacteriumGluconacetobacter xylinus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deinema, M. H. and L. Zevehvizen (1971) Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation.Arch. Microbiol. 78: 42–51.

    CAS  Google Scholar 

  2. Ross, P., R. Mayer and M. Benzimann (1991) Cellulose biosynthesis and function in bacteria.Microbiol. Rev. 55: 35–58.

    CAS  Google Scholar 

  3. Römling, U. (2002) Molecular biology of cellulose production in bacteria.Res. Microbiol. 153: 205–212.

    Article  Google Scholar 

  4. Yoshinaga, F., N. Tonouchi, and K. Watanabe (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material.Biosci. Biotech. Biochem. 61: 219–224.

    CAS  Google Scholar 

  5. Fontana, J. D., A. M. Souza, C. K. Fontana, I. L. Torrianio, J. C. Moreschi, B. J. Galloyi, S. J. Souza, G. P. Narcisco, J. A. Bichara, and L. F. X. Farah (1990)Acetobacter cellulose pellicle as a temporary skin substitute.Appl. Biochem. Biotechnol. 24/25: 253–264.

    Article  Google Scholar 

  6. Nishi, Y., M. Uryu, S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, and S. Mitsuhashi (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose.J. Mater. Sci. 25: 2997–3001.

    Article  CAS  Google Scholar 

  7. Vandamme, E. J., S. D. Beats, A. Vanbalen, K. Joris, and P. D. Wulf (1998) Improved production of bacterial cellulose and its application potential.Polymer Degrad. Stabil. 59: 93–99.

    Article  CAS  Google Scholar 

  8. Delmer, D. P. (1987) Cellulose biosynthesis.Annu. Rev. Plant Physiol. 38: 259–290.

    Article  CAS  Google Scholar 

  9. Swissa, M., Y. Aloni, H. Weinhouse, and M. Benziman (1980) Intermediatry steps inAcetobacter xylinum cellulose synthesis: Studies with whole cells and cell-free preparations of the wild type and a celluloseless mutant.J. Bacteriol. 143: 1142–1150.

    CAS  Google Scholar 

  10. Wong, H. C., A. L. Fear, R. D. Calhoon, G. H. Eichinger, R. Mayer, D. Amikam, M. Benziman, D. H. Gelfand, J. H. Meade, A. W. Emerick, R. Bruner, A. Ben-Bassat, and R. Tal (1990) Genetic organization of the cellulose synthase operon inAcetobacter xylinum.Proc. Natl. Acad. Sci. USA 87: 8130–8134.

    Article  CAS  Google Scholar 

  11. Saxena, I. M., K. Kudlicka, K. Okuda, and R. M. Brown Jr (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) ofAcetobacter xylimum: implications for cellulose crystallization.J. Bacteriol. 176: 5735–5752.

    CAS  Google Scholar 

  12. Volman, G., P. Ohana, and M. Benziman (1995) Biochemistry and molecular biology of cellulose biosynthesis.Carbohydrates 20: 20–27.

    Google Scholar 

  13. Tal, R., H. C. Wong, R. Calhoon, D. Gelfand, A. L. Fear, G. Volman, R. Mayer, P. Ross, D. Amikam, H. Weinhouse, A. Cohen, S. Sapir, P. Ohana, and M. Benziman (1998) Threecdg operons control cellular turnover of cyclic di-GMP inAcetobacter xylinum: Genetic organization and occurrence of conserved domains in isoenzymes.J. Bacteriol. 180: 4416–4425.

    CAS  Google Scholar 

  14. Ross, P., H. Weinhouse, Y. Aloni, D. Michaeli, P. Weinberger-Ohana, R. Mayer, S. Braun, E. de Vroom, G. van der Marel, J. H. van Boom, and M. Benziman (1987) Regulation of cellulose synthesis inAcetobacter xylinum by cyclic diguanylic acid.Nature 325: 279–281.

    Article  CAS  Google Scholar 

  15. Standal, R., T. G. Inversen, D. H. Coucheron, E. Fjærvik, J. Blatny, and S. Valla (1994) A new gene required for cellulose production and a gene encoding cellulolytic activity inAcetobacter xylinum are colocalized with thebcs operon.J. Bacteriol. 176: 665–672.

    CAS  Google Scholar 

  16. Nakai, T., A. Moriya, N. Tonouchi, T. Tsuchida, F. Yoshinaga, S. Horinouchi, Y. Sone, H. Mori, F. Sakai, and T. Hayashi (1998) Expression and characterization of sucrose synthase from mungbean seedlings inEscherichia coli.Gene 213: 93–100.

    Article  CAS  Google Scholar 

  17. Nakai, T., Y. Nishiyama, S. Kuga, Y. Sugano, and M. Shoda (2002) ORF2 gene involves in the construction of high-order structure of bacterial cellulose.Biochem. Biophys. Res. Commun. 295: 458–462.

    Article  CAS  Google Scholar 

  18. Brown R. M., Jr. H. Willson, and C. L. Richardson (1976) Cellulose biosynthesis inAcetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process.Proc. Natl. Acad. Sci. USA 73: 4565–4569.

    Article  CAS  Google Scholar 

  19. Zaar, K. (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacteriumAcetobacter xylinum.J. Cell. Biol. 80: 773–777.

    Article  CAS  Google Scholar 

  20. Kimura, S., H. P. Chen, I. M. Saxena, R. M. Brown Jr., and T. Itoh (2001) Localization of c-di-GMP-binding protein with the linear terminal complexes ofAcetobacter xylinum.J. Bacteriol. 183: 5668–5674.

    Article  CAS  Google Scholar 

  21. Park, J. K., J. Y. Jung, and Y. H. Park (2003) Cellulose production byGluconacetobacter hansenii in a medium containing ethanol.Biotechnol. Letts. 25: 2055–2059.

    Article  CAS  Google Scholar 

  22. Park, J. K., S. H. Hyun, and J. Y. Jung (2004) Conversion ofg. hansenii PJK into non-cellulose-producing mutants according to the culture condition.Biotechnol. Bioprocess Eng. 9: 383–388.

    Article  CAS  Google Scholar 

  23. Toyosaki, H., T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchida, and F. Yoshinaga (1995) Screening of bacterial cellulose-producingAcetobacter strains suitable for agitated culture.biosci. Biotech. Biochem. 59: 1498–1452.

    CAS  Google Scholar 

  24. Kouda, T., H. Yano, F. Yoshinaga, M. Kaminoyama, and M. Kamiwano (1996) Characterization of non-Newtonian behavior during mixing of bacterial cellulose in bioreactor.J. Ferment. Bioeng. 82: 382–386.

    Article  Google Scholar 

  25. Kouda, T., H. Yano, and F. Yoshinaga (1997) Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture.J. Ferment. Bioeng. 83: 371–376.

    Article  CAS  Google Scholar 

  26. Hwang, J. W., Y. K. Yang, J. K. Hwang, Y. R. Ryun, and Y. S. Kim (1999) Effects of pH and dissolved oxygen on cellulose production byAcetobacter xylinum BRC5 in agitated culture.J. Biosci. Bioeng. 88: 183–188.

    Article  CAS  Google Scholar 

  27. Naritomi, T., T. Kouda, H. Yano, and F. Yoshinaga (1998) Effect of lactate on bacterial cellulose production from continuous culture.J. Ferment. Bioeng. 85: 89–95.

    Article  CAS  Google Scholar 

  28. Son, H. J., M. S. Heo, Y. G. Kim, and S. J. Lee (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolatedAcetobacter sp. A9 in shaking cultures.Biotechnol. Appl. Biochem. 33: 1–5.

    Article  CAS  Google Scholar 

  29. Hestrin, S. and M. Schramm (1954) Synthesis of cellulose byAcetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose.Biochem. J. 58: 345–352.

    CAS  Google Scholar 

  30. Bae, S. and M. Shoda (2004) Production of bacterial cellulose byAcetobacter xylinum BPR2001 using molasses medium in a jar fermentor.Appl. Microbiol. Biotechnol. in press.

  31. Bae, S. and M. Shoda (2004) Bacterial cellulose production by fedbatch fermentation in molasses medium.Biotechnol. Prog. 20: 1366–1371.

    Article  CAS  Google Scholar 

  32. Gawande, B. N. and A. Y. Patkar (1999) Application of factorial designs for optimization of cyclodextrin glycosyl-transferase production fromKlebsiella pneumoniae AS-22.Biotechnol. Bioeng. 64: 168–173.

    Article  CAS  Google Scholar 

  33. Box, G. E. P. and J. S. Hunter (1957) Multi-factorial designs for exploring response surfaces.Ann Math Stat. 28: 195–241.

    Article  Google Scholar 

  34. Francis, F., A. Sabu, K. M. Nampoothiri, S. Ramachandran, S. Ghosh, G. Szakacs, and A. Pandey (2003) Use of response surface methodology for optimizing process parameters for the production of α-amylase byAspergillus oryzae.Biochem. Eng. J. 15: 107–115.

    CAS  Google Scholar 

  35. Embuscado, M. E., J. S. Marks, and J. N. BeMiller (1994) Bacterial cellulose. II. Optimization of cellulose production byAcetobacter xylinum through response surface methodology.Food Hydrocoll. 8: 419–430.

    CAS  Google Scholar 

  36. Galas, E., A. Krystynowicz, L. Tarabasz-Szymanska, T. Pankiewicz, and M. Rzyska (1999) Optimization of the production of bacterial cellulose using multivariable linear regression analysis.Acta Biotechnol. 19: 251–260.

    Article  CAS  Google Scholar 

  37. Box, G. E. P. and D. W. Behnken (1960) Some new three level designs for the study of quantitative variables.Technometrics 2: 455–475.

    Article  Google Scholar 

  38. Bae, S. and M. Shoda (2004) Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design.Biotechnol. Bioeng. in press.

  39. Noro, N., Y. Sugano, and M. Shoda (2004) Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production byAcetobacter xylinum.Appl. Microbiol. Biotechnol. 64: 199–205.

    Article  CAS  Google Scholar 

  40. Chao, Y., M. Mitarai, Y. Sugano, and M. Shoda (2001) Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor.Biotechnol. Prog. 17: 781–785.

    Article  CAS  Google Scholar 

  41. Bae, S., Y. Sugano, and M. Shoda (2004) Improvement of bacterial cellulose production by addition of agar in a far fermentor.J. Biosci. Bioeng. 97: 33–38.

    CAS  Google Scholar 

  42. Ishida, T., M. Mitarai, Y. Sugano, and M. Shoda (2003) Role of water-soluble polysaccharides in bacterial cellulose production.Biotechnol. Bioeng. 83: 474–478.

    Article  CAS  Google Scholar 

  43. Onken, U. and P. Weiland (1983)Airlift Fermentors: Construction, Behavior, and Use.In:Advances in Biotechnological Processes 1. pp. 67–95. Alan R. Liss, Inc., NY, USA.

    Google Scholar 

  44. Siegel, M. H., M. Hallaie, and J. C. Merchunk (1988)Airlift Reactors: Design, Operation, and Applications. InUpstream Process: Equipment and Techniques. pp. 79–124. Alan R. Liss, Inc., NY, USA.

    Google Scholar 

  45. Chao, Y., Y. Sugano, T. Kouda, F. Yoshinaga, and M. Shoda (1997) Production of bacterial cellulose byAcetobacter xylinum with an air-lift reactor.Biotechnol. Tech. 11: 829–832.

    Article  CAS  Google Scholar 

  46. Chao, Y., T. Ishida, Y. Sugano, and M. Shoda (2000) Bacterial cellulose production byAcetobacter xylinum in a 50-L internal-loop airlift reactor.Biotechnol. Bioeng. 68: 345–352.

    Article  CAS  Google Scholar 

  47. Chao, Y., Y. Sugano, and M. Shoda (2001) Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor.Appl. Microbiol. Biotechnol. 55: 673–679.

    Article  CAS  Google Scholar 

  48. Chao, Y. (2002)Characteristics of Bacterial Cellulose production by Acetobacter xylinumby an Airlift Reactor. Ph.D. Thesis. Tokyo Institute of Technology, Tokyo, Japan.

    Google Scholar 

  49. Joseph, G., G. E. Rowe, A. Margaritis, and W. Wan (2003) Effects of polysaccharide-co-acrylic acid on cellulose production byAcetobacter xylinum.J. Chem. Technol. Biotechnol. 78: 964–970.

    Article  CAS  Google Scholar 

  50. Serafica, G., R. Mormino, and H. Bungay (2002) Inclusion of solid particles in bacterial cellulose.Appl. Microbiol. Biotechnol. 58: 756–760.

    Article  CAS  Google Scholar 

  51. Krystynowicz, A., W. Czaja, A. Wiktorowska-Jezierska, M. Gonçalves-Miśkiewicz, M. Turkiewicz, and S. Bielecki (2002) Factors affecting the yield and properties of bacterial cellulose.J. Indust. Microbiol. Biotechnol. 29: 189–195.

    Article  CAS  Google Scholar 

  52. Solano, C., B. Garcia, J. Valle, C. Berasain, J-M. Ghigo, C. Gamazao, and I. Lasa (2002) Genetic analysis ofSalmonella enteritidis biofilm formation: Critical role of cellulose.Mol. Microbiol. 43: 793–808.

    Article  CAS  Google Scholar 

  53. Wulf, P. D., K. Joris, and E. J. Vandamme (1996) Improved cellulose formation by anAcetobacter xylinum mutant limited in (keto)gluconate synthesis.J. Chem. Tech. Biotechnol. 67: 376–380.

    Article  Google Scholar 

  54. Ishida, T., Y. Sugano, T. Nakai, and M. Shoda (2002) Effects of acetan on production of bacterial cellulose byAcetobacter xylinum.Biosci. Biotechnol. Biochem. 66: 1677–1681.

    Article  CAS  Google Scholar 

  55. Bae, S., Y. Sugano, K. Ohi, and M. Shoda (2004) Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene ofAcetobacter xylinum BPR2001.Appl. Microbiol. Biotechnol. 65: 315–322.

    Article  CAS  Google Scholar 

  56. Zogaj, X., M. Nimitz, M. Rohde, W. Bokranz, and U. Römling (2001) The multicellular morphotypes ofSalmonella typhimurium andEscherichia coli produce cellulose as the second component of the extracellular matrix.Mol. Microbiol. 39: 1452–1463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Shoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoda, M., Sugano, Y. Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng. 10, 1–8 (2005). https://doi.org/10.1007/BF02931175

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931175

Keywords

Navigation