Skip to main content
Log in

Characterization of electron spin exchange interactions in cellulose chars by means of ESR,1H NMR, and Dynamic Nuclear Polarization

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Cellulose chars heat treated under nitrogen atmosphere for six hours over a range of heating temperatures from 250 to 1000°C were studied by ESR, broadline1H NMR, and Dynamic Nuclear Polarization (DNP). Chars heated below 450°C exhibited DNP enhancements predominantly due to the solid state effect resulting from static electron-nuclear spinspin interactions, while chars heated at higher temperatures exhibited Overhauser enhancements, which result from time dependent interactions. It was found that, while the maximum number of unpaired electrons was obtained at a heating temperature of 700°C, the maximum Zeeman and rotating-frame1H relaxation rates were achieved at much lower temperatures. Moreover, small Overhauser enhancements were observed even at the lower heating temperatures, where the time dependent electron-nuclear interactions are expected to be minimal, and the solid state enhancements decrease more rapidly than expected for samples heated above 350°C. These effects are explained in terms of a distribution of rates of electron-electron spin-exchange interactions. The charred and carbonized cellulose samples provided a set of solids in which the number of unpaired electrons varied over a large range and exhibited a broad distribution of spin-exchange rates. It was shown that DNP-NMR is a powerful method for probing this distribution, and for detecting small fractions of rapidly exchanging and static electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ingram D.J.E., Bennett J.E.: Phil. Mag. (7th ser.)45, 545 (1954)

    Google Scholar 

  2. Uebersfeld, J., Etienne A., Combrisson J.: Nature174, 614 (1954)

    Article  ADS  Google Scholar 

  3. Winslow F.H., Baker W.O., Yager W.A.: J. Am. Chem. Soc.77, 4751 (1955)

    Article  Google Scholar 

  4. Jackson C., Wynne-Jones W.F.K.: Carbon2, 227 (1964)

    Article  Google Scholar 

  5. Armstrong J.W., Jackson C., Marsh H.: Carbon2, 239 (1964)

    Article  Google Scholar 

  6. Harker H., Gallagher J.T., Parkin A.: Carbon4, 401 (1966)

    Article  Google Scholar 

  7. Milsch B., Windsch W., Heinzelmann H.: Carbon6, 807 (1968)

    Article  Google Scholar 

  8. Lewis I.C., Singer L.S. in: Chemistry and Physics of Carbon (Walker P.L., Jr., Thrower A., eds.), vol. 17, p. 2. New York: Marcel Dekker 1981.

    Google Scholar 

  9. Degroot W.F., Shafizadeh F.: Carbon21, 61 (1983)

    Article  Google Scholar 

  10. Mrozowski S.: Carbon26, 521 (1988)

    Article  Google Scholar 

  11. Schaefer J., Stejskal E.O.: J. Am. Chem. Soc.98, 1031 (1976)

    Article  Google Scholar 

  12. Sekiguchi Y., Frye J.S., Shafizadeh F.: J. Appl. Poly. Sci.28, 3513 (1983)

    Article  Google Scholar 

  13. Sekiguchi Y., Shafizadeh F.: J. Appl. Poly. Sci.29, 1267 (1984)

    Article  Google Scholar 

  14. Shafizadeh F., Sekiguchi Y.: Combustion and Flame55, 171 (1984)

    Article  Google Scholar 

  15. Erb E., Motchane J.L., Uebersfeld J.: C.R. Acad. Sci.246, 2121 (1958)

    Google Scholar 

  16. Abragam A., Landesman A., Winter J.M.: C.R. Acad. Sci.247, 1849 (1958)

    Google Scholar 

  17. Krebs J.J., Thompson J.K.: J. Chem. Phys.36, 2509 (1962)

    Article  ADS  Google Scholar 

  18. Dabault M., Legrand A.P., Uebersfeld J., Perrot J.M., Roques M., Bastick M.: Carbon11, 363 (1973)

    Article  Google Scholar 

  19. Wind R.A., Duijvestijn M.J., van der Lugt C., Manenschijn A., Vriend J.: Progr. NMR Spectrosc.17, 33 (1985)

    Article  Google Scholar 

  20. Wind R.A., Lewis R., Lock H., Maciel G.E. in: Magnetic Resonance of Carbonaceous Solids (Botto R.E., Sanada Y., eds.), ACS Symposium Series 229, p. 45. Washington D.C.: ACS 1993.

    Google Scholar 

  21. Wind R.A., Li L., Maciel G.E., Wooten J.B.: manuscript in preparation.

  22. Singer L.S.: Proc. Fifth Carbon Conference, vol.2, p. 37. New York: Pergamon Press 1963.

    Google Scholar 

  23. Wertz J.E., Bolton J.R.: Electron Spin Resonance Elementary Theory and Practical Applications. New York: Chapman and Hall 1986.

    Google Scholar 

  24. Wind R.A., Anthonio F.E., Duijvestijn M.J., Smidt J., Trommel J., De Vette G.M.C.: J. Magn. Reson.52, 424 (1983)

    Google Scholar 

  25. Singer L.S., Spry W.J., Smith W.H.: Proc. Third Carbon Conference, p. 121. New York: Pergamon Press 1959.

    Google Scholar 

  26. Hausser K.H., Stehlik D. in: Advances in Magnetic Resonance (Waugh J.S., ed.), vol. 3, p. 79. New York: Academic Press 1968.

    Google Scholar 

  27. McConnell H.M.: J. Chem. Phys.24, 764 (1954)

    Article  ADS  Google Scholar 

  28. Duijvestijn M.J., Wind R.A., Smidt J.: Physica138B, 147 (1986)

    Google Scholar 

  29. Rorschach H.E., Jr.: Physica30, 38 (1964)

    Article  ADS  Google Scholar 

  30. Look D.C., Lowe I.J.: J. Chem. Phys.44, 2295 (1966)

    Google Scholar 

  31. Lowe I.J., Gade S.: Phys. Rev.156, 817 (1967)

    Article  ADS  Google Scholar 

  32. Lowe I.J., Tse D.: Phys. Rev.166, 279 (1968)

    Article  ADS  Google Scholar 

  33. Tse D., Hartmann S.R.: Phys. Rev. Lett.21, 511 (1968)

    Article  ADS  Google Scholar 

  34. Atsarkin V.A., Demidov V.V.: Sov. Phys. JETP52, 726 (1980)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wind, R.A., Li, L., Maciel, G.E. et al. Characterization of electron spin exchange interactions in cellulose chars by means of ESR,1H NMR, and Dynamic Nuclear Polarization. Appl. Magn. Reson. 5, 161–176 (1993). https://doi.org/10.1007/BF03162519

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162519

Keywords

Navigation